Bayesian Generative Adversarial Networks in Tensorflow

Related tags

Deep Learningbayesgan
Overview

Bayesian Generative Adversarial Networks in Tensorflow

This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and Andrew Gordon Wilson. This paper appears at NIPS 2017.

Please cite our paper if you find this code useful in your research. The bibliographic information for the paper is

@inproceedings{saatciwilson,
  title={Bayesian gan},
  author={Saatci, Yunus and Wilson, Andrew G},
  booktitle={Advances in neural information processing systems},
  pages={3622--3631},
  year={2017}
}

Contents

  1. Introduction
  2. Dependencies
  3. Training options
  4. Usage
    1. Installation
    2. Synthetic Data
    3. Examples: MNIST, CIFAR10, CelebA, SVHN
    4. Custom data

Introduction

In the Bayesian GAN we propose conditional posteriors for the generator and discriminator weights, and marginalize these posteriors through stochastic gradient Hamiltonian Monte Carlo. Key properties of the Bayesian approach to GANs include (1) accurate predictions on semi-supervised learning problems; (2) minimal intervention for good performance; (3) a probabilistic formulation for inference in response to adversarial feedback; (4) avoidance of mode collapse; and (5) a representation of multiple complementary generative and discriminative models for data, forming a probabilistic ensemble.

We illustrate a multimodal posterior over the parameters of the generator. Each setting of these parameters corresponds to a different generative hypothesis for the data. We show here samples generated for two different settings of this weight vector, corresponding to different writing styles. The Bayesian GAN retains this whole distribution over parameters. By contrast, a standard GAN represents this whole distribution with a point estimate (analogous to a single maximum likelihood solution), missing potentially compelling explanations for the data.

Dependencies

This code has the following dependencies (version number crucial):

  • python 2.7
  • tensorflow==1.0.0

To install tensorflow 1.0.0 on linux please follow instructions at https://www.tensorflow.org/versions/r1.0/install/.

  • scikit-learn==0.17.1

You can install scikit-learn 0.17.1 with the following command

pip install scikit-learn==0.17.1

Alternatively, you can create a conda environment and set it up using the provided environment.yml file, as such:

conda env create -f environment.yml -n bgan

then load the environment using

source activate bgan

Usage

Installation

  1. Install the required dependencies
  2. Clone this repository

Synthetic Data

To run the synthetic experiment from the paper you can use bgan_synth script. For example, the following comand will train the Bayesian GAN (with D=100 and d=10) for 5000 iterations and store the results in .

./bgan_synth.py --x_dim 100 --z_dim 10 --numz 10 --out 
   

   

To run the ML GAN for the same data run

./bgan_synth.py --x_dim 100 --z_dim 10 --numz 1 --out 
   

   

bgan_synth has --save_weights, --out_dir, --z_dim, --numz, --wasserstein, --train_iter and --x_dim parameters. x_dim contolls the dimensionality of the observed data (x in the paper). For description of other parameters please see Training options.

Once you run the above two commands you will see the output of each 100th iteration in . So, for example, the Bayesian GAN's output at the 900th iteration will look like:

In contrast, the output of the standard GAN (corresponding to numz=1, which forces ML estimation) will look like:

indicating clearly the tendency of mode collapse in the standard GAN which, for this synthetic example, is completely avoided by the Bayesian GAN.

To explore the sythetic experiment further, and to generate the Jensen-Shannon divergence plots, you can check out the notebook synth.ipynb.

Unsupervised and Semi-Supervised Learning on benchmark datasets

MNIST, CIFAR10, CelebA, SVHN

bayesian_gan_hmc script allows to train the model on standard and custom datasets. Below we describe the usage of this script.

Data preparation

To reproduce the experiments on MNIST, CIFAR10, CelebA and SVHN datasets you need to prepare the data and use a correct --data_path.

  • for MNIST you don't need to prepare the data and can provide any --data_path;
  • for CIFAR10 please download and extract the python version of the data from https://www.cs.toronto.edu/~kriz/cifar.html; then use the path to the directory containing cifar-10-batches-py as --data_path;
  • for SVHN please download train_32x32.mat and test_32x32.mat files from http://ufldl.stanford.edu/housenumbers/ and use the directory containing these files as your --data_path;
  • for CelebA you will need to have openCV installed. You can find the download links for the data at http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html. You will need to create celebA folder with Anno and img_align_celeba subfolders. Anno must contain the list_attr_celeba.txt and img_align_celeba must contain the .jpg files. You will also need to crop the images by running datasets/crop_faces.py script with --data_path where is the path to the folder containing celebA. When training the model, you will need to use the same for --data_path;

Unsupervised training

You can run unsupervised learning by running the bayesian_gan_hmc script without --semi parameter. For example, use

./run_bgan.py --data_path 
   
     --dataset svhn --numz 10 --num_mcmc 2 --out_dir 

    
      --train_iter 75000 --save_samples --n_save 100

    
   

to train the model on the SVHN dataset. This command will run the method for 75000 iterations and save samples every 100 iterations. Here must lead to the directory where the results will be stored. See data preparation section for an explanation of how to set . See training options section for a description of other training options.

         

Semi-supervised training

To run the semi-supervised experiments you can use the run_bgan_semi.py script, which offers many options including the following:

  • --out_dir: path to the folder, where the outputs will be stored
  • --n_save: samples and weights are saved every n_save iterations; default 100
  • --z_dim: dimensionalit of z vector for generator; default 100
  • --data_path: path to the data; see data preparation for a detailed discussion; this parameter is required
  • --dataset: can be mnist, cifar, svhn or celeb; default mnist
  • --batch_size: batch size for training; default 64
  • --prior_std: std of the prior distribution over the weights; default 1
  • --num_gen: same as J in the paper; number of samples of z to integrate it out for generators; default 1
  • --num_disc: same as J_D in the paper; number of samples of z to integrate it out for discriminators; default 1
  • --num_mcmc: same as M in the paper; number of MCMC NN weight samples per z; default 1
  • --lr: learning rate used by the Adam optimizer; default 0.0002
  • --optimizer: optimization method to be used: adam (tf.train.AdamOptimizer) or sgd (tf.train.MomentumOptimizer); default adam
  • --N: number of labeled samples for semi-supervised learning
  • --train_iter: number of training iterations; default 50000
  • --save_samples: save generated samples during training
  • --save_weights: save weights during training
  • --random_seed: random seed; note that setting this seed does not lead to 100% reproducible results if GPU is used

You can also run WGANs with --wasserstein or train an ensemble of DCGANs with --ml_ensemble . In particular you can train a DCGAN with --ml.

You can train the model in semi-supervised setting by running bayesian_gan_hmc with --semi option. Use -N parameter to set the number of labeled examples to train on. For example, use

./run_bgan_semi.py --data_path 
   
     --dataset cifar --num_gen 10 --num_mcmc 2
--out_dir 
    
      --train_iter 100000 --N 4000 --lr 0.0005

    
   

to train the model on CIFAR10 dataset with 4000 labeled examples. This command will train the model for 100000 iterations and store the outputs in folder.

To train the model on MNIST with 100 labeled examples you can use the following command.

./bayesian_gan_hmc.py --data_path 
   
    / --dataset mnist --num_gen 10 --num_mcmc 2
--out_dir 
    
      --train_iter 100000 -N 100 --semi --lr 0.0005

    
   

Custom data

To train the model on a custom dataset you need to define a class with a specific interface. Suppose we want to train the model on the digits dataset. This datasets consists of 8x8 images of digits. Let's suppose that the data is stored in x_tr.npy, y_tr.npy, x_te.npy and y_te.npy files. We will assume that x_tr.npy and x_te.npy have shapes of the form (?, 8, 8, 1). We can then define the class corresponding to this dataset in bgan_util.py as follows.

class Digits:

    def __init__(self):
        self.imgs = np.load('x_tr.npy') 
        self.test_imgs = np.load('x_te.npy')
        self.labels = np.load('y_tr.npy')
        self.test_labels = np.load('y_te.npy')
        self.labels = one_hot_encoded(self.labels, 10)
        self.test_labels = one_hot_encoded(self.test_labels, 10) 
        self.x_dim = [8, 8, 1]
        self.num_classes = 10

    @staticmethod
    def get_batch(batch_size, x, y): 
        """Returns a batch from the given arrays.
        """
        idx = np.random.choice(range(x.shape[0]), size=(batch_size,), replace=False)
        return x[idx], y[idx]

    def next_batch(self, batch_size, class_id=None):
        return self.get_batch(batch_size, self.imgs, self.labels)

    def test_batch(self, batch_size):
        return self.get_batch(batch_size, self.test_imgs, self.test_labels)

The class must have next_batch and test_batch, and must have the imgs, labels, test_imgs, test_labels, x_dim and num_classes fields.

Now we can import the Digits class in bayesian_gan_hmc.py

from bgan_util import Digits

and add the following lines to to the processing of --dataset parameter.

if args.dataset == "digits":
    dataset = Digits()

After this preparation is done, we can train the model with, for example,

./run_bgan_semi.py --data_path 
   
     --dataset digits --num_gen 10 --num_mcmc 2 
--out_dir 
    
      --train_iter 100000 --save_samples

    
   

Acknowledgements

We thank Pavel Izmailov and Ben Athiwaratkun for help with stress testing this code and creating the tutorial.

Owner
Andrew Gordon Wilson
Machine Learning Professor at New York University.
Andrew Gordon Wilson
DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias

tofis 24 Oct 08, 2022
Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

DDAMS This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Pr

xcfeng 55 Dec 27, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 19, 2021
VoxHRNet - Whole Brain Segmentation with Full Volume Neural Network

VoxHRNet This is the official implementation of the following paper: Whole Brain Segmentation with Full Volume Neural Network Yeshu Li, Jonathan Cui,

Microsoft 12 Nov 24, 2022
Deep Reinforcement Learning with pytorch & visdom

Deep Reinforcement Learning with pytorch & visdom Sample testings of trained agents (DQN on Breakout, A3C on Pong, DoubleDQN on CartPole, continuous A

Jingwei Zhang 783 Jan 04, 2023
Attendance Monitoring with Face Recognition using Python

Attendance Monitoring with Face Recognition using Python A python GUI integrated attendance system using face recognition to take attendance. In this

Vaibhav Rajput 2 Jun 21, 2022
An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astronomy data.

EquivariantSelfAttention An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astro

2 Nov 09, 2021
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
a simple, efficient, and intuitive text editor

Oxygen beta a simple, efficient, and intuitive text editor Overview oxygen is a simple, efficient, and intuitive text editor designed as more featured

Aarush Gupta 1 Feb 23, 2022
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li ęŽå¤ 663 Nov 30, 2022
Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology (LMRL Workshop, NeurIPS 2021)

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology Self-Supervised Vision Transformers Learn Visual Concepts in Histopatholog

Richard Chen 95 Dec 24, 2022
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well i

0 Sep 06, 2022
This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation

Official PyTorch repo for GAN's N' Roses. Diverse im2im and vid2vid selfie to anime translation.

1.1k Jan 01, 2023