This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Overview

Swin Transformer

This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8.

Introduction(Quoted from the Original Project )

Swin Transformer original github repo (the name Swin stands for Shifted window) is initially described in arxiv, which capably serves as a general-purpose backbone for computer vision. It is basically a hierarchical Transformer whose representation is computed with shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection.

Setup

  1. Please refer to the Install session for conda environment build.
  2. Please refer to the Data preparation session to prepare Imagenet-1K.
  3. Install the TensorRT, now we choose the TensorRT 8.2 GA(8.2.1.8) as the test version.

Code Structure

Focus on the modifications and additions.

.
├── export.py                  # Export the PyTorch model to ONNX format
├── get_started.md            
├── main.py
├── models
│   ├── build.py
│   ├── __init__.py
│   ├── swin_mlp.py
│   └── swin_transformer.py    # Build the model, modified to export the onnx and build the TensorRT engine
├── README.md
├── trt                        # Directory for TensorRT's engine evaluation and visualization.
│   ├── engine.py
│   ├── eval_trt.py            # Evaluate the tensorRT engine's accuary.
│   ├── onnxrt_eval.py         # Run the onnx model, generate the results, just for debugging
├── utils.py
└── weights

Export to ONNX and Build TensorRT Engine

You need to pay attention to the two modification below.

  1. Exporting the operator roll to ONNX opset version 9 is not supported. A: Please refer to torch/onnx/symbolic_opset9.py, add the support of exporting torch.roll.

  2. Node (Concat_264) Op (Concat) [ShapeInferenceError] All inputs to Concat must have same rank.
    A: Please refer to the modifications in models/swin_transformer.py. We use the input_resolution and window_size to compute the nW.

       if mask is not None:
         nW = int(self.input_resolution[0]*self.input_resolution[1]/self.window_size[0]/self.window_size[1])
         #nW = mask.shape[0]
         #print('nW: ', nW)
         attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
         attn = attn.view(-1, self.num_heads, N, N)
         attn = self.softmax(attn)

Accuray Test Results on ImageNet-1K Validation Dataset

  1. Download the Swin-T pretrained model from Model Zoo. Evaluate the accuracy of the Pytorch pretrained model.

    $ python -m torch.distributed.launch --nproc_per_node 1 --master_port 12345 main.py --eval --cfg configs/swin_tiny_patch4_window7_224.yaml --resume ./weights/swin_tiny_patch4_window7_224.pth --data-path ../imagenet_1k
  2. export.py exports a pytorch model to onnx format.

    $ python export.py --eval --cfg configs/swin_tiny_patch4_window7_224.yaml --resume ./weights/swin_tiny_patch4_window7_224.pth --data-path ../imagenet_1k --batch-size 16
  3. Build the TensorRT engine using trtexec.

    $ trtexec --onnx=./weights/swin_tiny_patch4_window7_224.onnx --buildOnly --verbose --saveEngine=./weights/swin_tiny_patch4_window7_224_batch16.engine --workspace=4096

    Add the --fp16 or --best tag to build the corresponding fp16 or int8 model. Take fp16 as an example.

    $ trtexec --onnx=./weights/swin_tiny_patch4_window7_224.onnx --buildOnly --verbose --fp16 --saveEngine=./weights/swin_tiny_patch4_window7_224_batch16_fp16.engine --workspace=4096

    You can use the trtexec to test the throughput of the TensorRT engine.

    $ trtexec --loadEngine=./weights/swin_tiny_patch4_window7_224_batch16.engine
  4. trt/eval_trt.py aims to evalute the accuracy of the TensorRT engine.

$ python trt/eval_trt.py --eval --cfg configs/swin_tiny_patch4_window7_224.yaml --resume ./weights/swin_tiny_patch4_window7_224_batch16.engine --data-path ../imagenet_1k --batch-size 16
  1. trt/onnxrt_eval.py aims to evalute the accuracy of the Onnx model, just for debug.
    $ python trt/onnxrt_eval.py --eval --cfg configs/swin_tiny_patch4_window7_224.yaml --resume ./weights/swin_tiny_patch4_window7_224.onnx --data-path ../imagenet_1k --batch-size 16
SwinTransformer(T4) [email protected] Notes
PyTorch Pretrained Model 81.160
TensorRT Engine(FP32) 81.156
TensorRT Engine(FP16) - TensorRT 8.0.3.4: 81.156% vs TensorRT 8.2.1.8: 72.768%

Notes: Reported a nvbug for the FP16 accuracy issue, please refer to nvbug 3464358.

Speed Test of TensorRT engine(T4)

SwinTransformer(T4) FP32 FP16 INT8
batchsize=1 245.388 qps 510.072 qps 514.707 qps
batchsize=16 316.8624 qps 804.112 qps 804.1072 qps
batchsize=64 329.13984 qps 833.4208 qps 849.5168 qps
batchsize=256 331.9808 qps 844.10752 qps 840.33024 qps

Analysis: Compared with FP16, INT8 does not speed up at present. The main reason is that, for the Transformer structure, most of the calculations are processed by Myelin. Currently Myelin does not support the PTQ path, so the current test results are expected.
Attached the int8 and fp16 engine layer information with batchsize=128 on T4.

Build with int8 precision:

[12/04/2021-06:34:17] [V] [TRT] Engine Layer Information:
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to Conv_0, Tactic: 0, input_0[Float(128,3,224,224)] -> Reformatted Input Tensor 0 to Conv_0[Int8(128,3,224,224)]
Layer(CaskConvolution): Conv_0, Tactic: 1025026069226666066, Reformatted Input Tensor 0 to Conv_0[Int8(128,3,224,224)] -> 191[Int8(128,96,56,56)]
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to {ForeignNode[318...Transpose_2125 + Flatten_2127 + (Unnamed Layer* 4178) [Shuffle]]}, Tactic: 0, 191[Int8(128,96,56,56)] -> Reformatted Input Tensor 0 to {ForeignNode[318...Transpose_2125 + Flatten_2127 + (Unnamed Layer* 4178) [Shuffle]]}[Half(128,96,56,56)]
Layer(Myelin): {ForeignNode[318...Transpose_2125 + Flatten_2127 + (Unnamed Layer* 4178) [Shuffle]]}, Tactic: 0, Reformatted Input Tensor 0 to {ForeignNode[318...Transpose_2125 + Flatten_2127 + (Unnamed Layer* 4178) [Shuffle]]}[Half(128,96,56,56)] -> (Unnamed Layer* 4178) [Shuffle]_output[Half(128,768,1,1)]
Layer(CaskConvolution): Gemm_2128, Tactic: -1838109259315759592, (Unnamed Layer* 4178) [Shuffle]_output[Half(128,768,1,1)] -> (Unnamed Layer* 4179) [Fully Connected]_output[Half(128,1000,1,1)]
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to (Unnamed Layer* 4183) [Shuffle], Tactic: 0, (Unnamed Layer* 4179) [Fully Connected]_output[Half(128,1000,1,1)] -> Reformatted Input Tensor 0 to (Unnamed Layer* 4183) [Shuffle][Float(128,1000,1,1)]
Layer(NoOp): (Unnamed Layer* 4183) [Shuffle], Tactic: 0, Reformatted Input Tensor 0 to (Unnamed Layer* 4183) [Shuffle][Float(128,1000,1,1)] -> output_0[Float(128,1000)]

Build with fp16 precision:

[12/04/2021-06:44:31] [V] [TRT] Engine Layer Information:
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to Conv_0, Tactic: 0, input_0[Float(128,3,224,224)] -> Reformatted Input Tensor 0 to Conv_0[Half(128,3,224,224)]
Layer(CaskConvolution): Conv_0, Tactic: 1579845938601132607, Reformatted Input Tensor 0 to Conv_0[Half(128,3,224,224)] -> 191[Half(128,96,56,56)]
Layer(Myelin): {ForeignNode[318...(Unnamed Layer* 4183) [Shuffle]]}, Tactic: 0, 191[Half(128,96,56,56)] -> Reformatted Output Tensor 0 to {ForeignNode[318...(Unnamed Layer* 4183) [Shuffle]]}[Half(128,1000)]
Layer(Reformat): Reformatting CopyNode for Output Tensor 0 to {ForeignNode[318...(Unnamed Layer* 4183) [Shuffle]]}, Tactic: 0, Reformatted Output Tensor 0 to {ForeignNode[318...(Unnamed Layer* 4183) [Shuffle]]}[Half(128,1000)] -> output_0[Float(128,1000)]

Todo

After the FP16 nvbug 3464358 solved, will do the QAT optimization.

Owner
maggiez
maggiez
maggiez
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

Launch Platform 16 Oct 11, 2022
mmdetection version of TinyBenchmark.

introduction This project is an mmdetection version of TinyBenchmark. TODO list: add TinyPerson dataset and evaluation add crop and merge for image du

34 Aug 27, 2022
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
BEGAN in PyTorch

BEGAN in PyTorch This project is still in progress. If you are looking for the working code, use BEGAN-tensorflow. Requirements Python 2.7 Pillow tqdm

Taehoon Kim 260 Dec 07, 2022
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021)

RSCD (BS-RSCD & JCD) Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021) by Zhihang Zhong, Yinqiang Zheng, Imari Sato We co

81 Dec 15, 2022
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

yun_yang 192 Dec 12, 2022
This is the latest version of the PULP SDK

PULP-SDK This is the latest version of the PULP SDK, which is under active development. The previous (now legacy) version, which is no longer supporte

78 Dec 07, 2022
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho

65 Nov 28, 2022
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
pq is a jq-like Pickle file viewer

pq PQ is a jq-like viewer/processing tool for pickle files. howto # pq '' file.pkl {'other': 456, 'test': 123} # pq 'table' file.pkl |other|test| | 45

3 Mar 15, 2022
An auto discord account and token generator. Automatically verifies the phone number. Works without proxy. Bypasses captcha.

JOIN DISCORD SERVER https://discord.gg/uAc3agBY FREE HCAPTCHA SOLVING API Discord-Token-Gen An auto discord token generator. Auto verifies phone numbe

3kp 271 Jan 01, 2023
SIMULEVAL A General Evaluation Toolkit for Simultaneous Translation

SimulEval SimulEval is a general evaluation framework for simultaneous translation on text and speech. Requirement python = 3.7.0 Installation git cl

Facebook Research 48 Dec 28, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
This repository contains the data and code for the paper "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors" ([email protected])

GP-VAE This repository provides datasets and code for preprocessing, training and testing models for the paper: Diverse Text Generation via Variationa

Wanyu Du 18 Dec 29, 2022