NAS-Bench-x11 and the Power of Learning Curves

Overview

NAS-Bench-x11

NAS-Bench-x11 and the Power of Learning Curves
Shen Yan, Colin White, Yash Savani, Frank Hutter.
NeurIPS 2021.

Surrogate NAS benchmarks for multi-fidelity algorithms

We present a method to create surrogate neural architecture search (NAS) benchmarks, NAS-Bench-111, NAS-Bench-311, and NAS-Bench-NLP11, that output the full training information for each architecture, rather than just the final validation accuracy. This makes it possible to benchmark multi-fidelity techniques such as successive halving and learning curve extrapolation (LCE). Then we present a framework for converting popular single-fidelity algorithms into LCE-based algorithms.

nas-bench-x11

Installation

Clone this repository and install its requirements.

git clone https://github.com/automl/nas-bench-x11
cd nas-bench-x11
cat requirements.txt | xargs -n 1 -L 1 pip install
pip install -e .

Download the pretrained surrogate models and place them into checkpoints/. The current models are v0.5. We will continue to improve the surrogate model by adding the sliding window noise model.

NAS-Bench-311 and NAS-Bench-NLP11 will work as is. To use NAS-Bench-111, first install NAS-Bench-101.

Using the API

The api is located in nas_bench_x11/api.py.

Here is an example of how to use the API:

from nas_bench_x11.api import load_ensemble

# load the surrogate
nb311_surrogate_model = load_ensemble('path/to/nb311-v0.5')

# define a genotype as in the original DARTS repository
from collections import namedtuple
Genotype = namedtuple('Genotype', 'normal normal_concat reduce reduce_concat')
arch = Genotype(normal=[('sep_conv_3x3', 0), ('sep_conv_5x5', 1), ('skip_connect', 1), ('max_pool_3x3', 2), ('sep_conv_3x3', 0), ('dil_conv_5x5', 1), ('sep_conv_5x5', 2), ('dil_conv_5x5', 4)], \
                normal_concat=[2, 3, 4, 5, 6], \
                reduce=[('dil_conv_5x5', 0), ('skip_connect', 1), ('avg_pool_3x3', 0), ('sep_conv_5x5', 1), ('avg_pool_3x3', 0), ('max_pool_3x3', 2), ('sep_conv_3x3', 1), ('max_pool_3x3', 3)], \
                reduce_concat=[4, 5, 6])

# query the surrogate to output the learning curve
learning_curve = nb311_surrogate_model.predict(config=arch, representation="genotype", with_noise=True)
print(learning_curve)
# outputs: [34.50166741 44.77032749 50.62796474 ... 93.47724664]

Run NAS experiments from our paper

You will also need to download the nas-bench-301 runtime model lgb_runtime_v1.0 and place it inside a folder called nb_models.

# Supported optimizers: (rs re ls bananas)-{svr, lce}, hb, bohb 

bash naslib/benchmarks/nas/run_nb311.sh 
bash naslib/benchmarks/nas/run_nb201.sh 
bash naslib/benchmarks/nas/run_nb201_cifar100.sh 
bash naslib/benchmarks/nas/run_nb201_imagenet16-200.sh
bash naslib/benchmarks/nas/run_nb111.sh 
bash naslib/benchmarks/nas/run_nbnlp.sh 

Results will be saved in results/.

Citation

@inproceedings{yan2021bench,
  title={NAS-Bench-x11 and the Power of Learning Curves},
  author={Yan, Shen and White, Colin and Savani, Yash and Hutter, Frank},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}
Owner
AutoML-Freiburg-Hannover
AutoML-Freiburg-Hannover
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks

Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks This is our Pytorch implementation for the paper: Zirui Zhu, Chen Gao, Xu C

Zirui Zhu 3 Dec 30, 2022
GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.

The GT4SD (Generative Toolkit for Scientific Discovery) is an open-source platform to accelerate hypothesis generation in the scientific discovery process. It provides a library for making state-of-t

Generative Toolkit 4 Scientific Discovery 142 Dec 24, 2022
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
PyTorch implementation of "A Two-Stage End-to-End System for Speech-in-Noise Hearing Aid Processing"

Implementation of the Sheffield entry for the first Clarity enhancement challenge (CEC1) This repository contains the PyTorch implementation of "A Two

10 Aug 19, 2022
Implementing a simplified copy of Shazam application from scratch using MinHashing and LSH.

Building Shazam from scratch In this repository we tried to implement a simplified copy of the Shazam application able to tell you the name of a song

Arturo Ghinassi 0 Nov 17, 2022
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
Pipeline code for Sequential-GAM(Genome Architecture Mapping).

Sequential-GAM Pipeline code for Sequential-GAM(Genome Architecture Mapping). mapping whole_preprocess.sh include the whole processing of mapping. usa

3 Nov 03, 2022
Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"

BEGAN in Tensorflow Tensorflow implementation of BEGAN: Boundary Equilibrium Generative Adversarial Networks. Requirements Python 2.7 or 3.x Pillow tq

Taehoon Kim 922 Dec 21, 2022
Source code and data in paper "MDFEND: Multi-domain Fake News Detection (CIKM'21)"

MDFEND: Multi-domain Fake News Detection This is an official implementation for MDFEND: Multi-domain Fake News Detection which has been accepted by CI

Rich 40 Dec 18, 2022
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co

Maya Kabkab 212 Dec 07, 2022
A Marvelous ChatBot implement using PyTorch.

PyTorch Marvelous ChatBot [Update] it's 2019 now, previously model can not catch up state-of-art now. So we just move towards the future a transformer

JinTian 223 Oct 18, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in

Xiaoqiang Wang 8 May 22, 2022