SiamMOT is a region-based Siamese Multi-Object Tracking network that detects and associates object instances simultaneously.

Overview

SiamMOT

SiamMOT is a region-based Siamese Multi-Object Tracking network that detects and associates object instances simultaneously.

SiamMOT: Siamese Multi-Object Tracking,
Bing Shuai, Andrew Berneshawi, Xinyu Li, Davide Modolo, Joseph Tighe,

@inproceedings{shuai2021siammot,
  title={SiamMOT: Siamese Multi-Object Tracking},
  author={Shuai, Bing and Berneshawi, Andrew and Li, Xinyu and Modolo, Davide and Tighe, Joseph},
  booktitle={CVPR},
  year={2021}
}

Abstract

In this paper, we focus on improving online multi-object tracking (MOT). In particular, we introduce a region-based Siamese Multi-Object Tracking network, which we name SiamMOT. SiamMOT includes a motion model that estimates the instance’s movement between two frames such that detected instances are associated. To explore how the motion modelling affects its tracking capability, we present two variants of Siamese tracker, one that implicitly models motion and one that models it explicitly. We carry out extensive quantitative experiments on three different MOT datasets: MOT17, TAO-person and Caltech Roadside Pedestrians, showing the importance of motion modelling for MOT and the ability of SiamMOT to substantially outperform the state-of-the-art. Finally, SiamMOT also outperforms the winners of ACM MM’20 HiEve Grand Challenge on HiEve dataset. Moreover, SiamMOT is efficient, and it runs at 17 FPS for 720P videos on a single modern GPU.

Installation

Please refer to INSTALL.md for installation instructions.

Try SiamMOT demo

For demo purposes, we provide two tracking models -- tracking person (visible part) or jointly tracking person and vehicles (bus, car, truck, motorcycle, etc). The person tracking model is trained on COCO-17 and CrowdHuman, while the latter model is trained on COCO-17 and VOC12. Currently, both models used in demos use EMM as its motion model, which performs best among different alternatives.

In order to run the demo, use the following command:

python3 demos/demo.py --demo-video  PATH_TO_DEMO_VIDE --track-class person --dump-video True

You can choose person or person_vehicel for track-class such that person tracking or person/vehicle tracking model is used accordingly.

The model would be automatically downloaded to demos/models, and the visualization of tracking outputs is automatically saved to demos/demo_vis

We also provide several pre-trained models in model_zoos.md that can be used for demo.

Dataset Evaluation and Training

After installation, follow the instructions in DATA.md to setup the datasets. As a sanity check, the models presented in model_zoos.md can be used to for benchmark testing.

Use the following command to train a model on an 8-GPU machine: Before running training / inference, setup the configuration file properly

python3 -m torch.distributed.launch --nproc_per_node=8 tools/train_net.py --config-file configs/dla/DLA_34_FPN.yaml --train-dir PATH_TO_TRAIN_DIR --model-suffix MODEL_SUFFIX 

Use the following command to test a model on a single-GPU machine:

python3 tools/test_net.py --config-file configs/dla/DLA_34_FPN.yaml --output-dir PATH_TO_OUTPUT_DIR --model-file PATH_TO_MODEL_FILE --test-dataset DATASET_KEY --set val

Note: If you get an error ModuleNotFoundError: No module named 'siammot' when running in the git root then make sure your PYTHONPATH includes the current directory, which you can add by running: export PYTHONPATH=.:$PYTHONPATH or you can explicitly add the project to the path by replacing the '.' in the export command with the absolute path to the git root.

Multi-gpu testing is going to be supported later.

Version

This is the preliminary version specifically for Airbone Object Tracking (AOT) workshop. The current version only support the motion model being EMM.

We will add more motion models in the next version, together with more features, stay tuned.

License

This project is licensed under the Apache-2.0 License.

Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
Code accompanying the paper "Knowledge Base Completion Meets Transfer Learning"

Knowledge Base Completion Meets Transfer Learning This code accompanies the paper Knowledge Base Completion Meets Transfer Learning published at EMNLP

14 Nov 27, 2022
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
A curated list of long-tailed recognition resources.

Awesome Long-tailed Recognition A curated list of long-tailed recognition and related resources. Please feel free to pull requests or open an issue to

Zhiwei ZHANG 542 Jan 01, 2023
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

39 Dec 17, 2022
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
Caffe implementation for Hu et al. Segmentation for Natural Language Expressions

Segmentation from Natural Language Expressions This repository contains the Caffe reimplementation of the following paper: R. Hu, M. Rohrbach, T. Darr

10 Jul 27, 2021
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
Implementation of association rules mining algorithms (Apriori|FPGrowth) using python.

Association Rules Mining Using Python Implementation of association rules mining algorithms (Apriori|FPGrowth) using python. As a part of hw1 code in

Pre 2 Nov 10, 2021
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022