[BMVC 2021] Official PyTorch Implementation of Self-supervised learning of Image Scale and Orientation Estimation

Overview

Self-Supervised Learning of Image Scale and Orientation Estimation (BMVC 2021)


PatchPoseNet


This is the official implementation of the paper "Self-Supervised Learning of Image Scale and Orientation Estimation" by Jongmin Lee [Google Scholar], Yoonwoo Jeong [Google Scholar], and Minsh Cho [Google Scholar]. We introduce a self-supervised framework for learning patch pose. Given a rescaled/rotated pair of image patches, we feed them to the patch pose estimation networks that output scale/orientation histograms for each. We compare the output histogram vectors by the histogram alignment technique and compute the loss.

Requirements

  • Ubuntu 18.04
  • python 3.8
  • pytorch 1.8.1
  • torchvision 0.9.1
  • wandb 0.10.28

Environment

Clone the Git repository

git clone https://github.com/bluedream1121/SelfScaOri.git

Install dependency

Run the script to install all the dependencies. You need to provide the conda install path (e.g. ~/anaconda3) and the name for the created conda environment.

bash install.sh conda_install_path self-sca-ori

Dataset preparation

You can download the training/test dataset using the following scripts:

cd datasets
bash download.sh

If you want to regenerate the patchPose datasets, please run the following script:

cd datasets/patchpose_dataset_generation
bash generation_script.sh

Trained models

cd trained_models
bash download_ori_model.sh
bash download_sca_model.sh

Test on the patchPose and the HPatches

After download the datasets and the pre-trained models, you can evaluate the patch pose estimation results using the following scripts:

python test.py --load trained_models/_*branchori/best_model.pt  --dataset_type ppa_ppb
python test.py --load trained_models/_*branchsca/best_model.pt  --dataset_type ppa_ppb

python test.py --load trained_models/_*branchori/best_model.pt  --dataset_type hpa
python test.py --load trained_models/_*branchsca/best_model.pt  --dataset_type hpa

Training


Hitogram_alignment


You can train the networks for patch scale estimation and orientation estimation using the proposed histogram alignment loss as follows:

python train.py --branch ori --output_ori 36

python train.py --branch sca --output_sca 13

Citation

If you find our code or paper useful to your research work, please consider citing our work using the following bibtex:

@inproceedings{lee2021self,
    author   = {},
    title    = {},
    booktitle= {},
    year     = {2021}
}

Contact

Jongmin Lee ([email protected])

Questions can also be left as issues in the repository.

Owner
Jongmin Lee
POSTECH Computer Vision Lab.
Jongmin Lee
Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback

CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung

Seung Min Lee 54 Dec 08, 2022
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

Changwoo Ha 268 Dec 22, 2022
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
A library for hidden semi-Markov models with explicit durations

hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for

Joris Vankerschaver 69 Dec 20, 2022
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
Metadata-Extractor - Metadata Extractor Script can be used to read in exif metadata

Metadata Extractor The exifextract script can be used to read in exif metadata f

1 Feb 16, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
Contextual Attention Network: Transformer Meets U-Net

Contextual Attention Network: Transformer Meets U-Net Contexual attention network for medical image segmentation with state of the art results on skin

Reza Azad 67 Nov 28, 2022
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
Time series annotation library.

CrowdCurio Time Series Annotator Library The CrowdCurio Time Series Annotation Library implements classification tasks for time series. Features Suppo

CrowdCurio 51 Sep 15, 2022
Code for our ALiBi method for transformer language models.

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation This repository contains the code and models for our paper Tra

Ofir Press 211 Dec 31, 2022
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.

vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid

NVIDIA Corporation 8.1k Jan 01, 2023
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022