Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

Overview

gHHC

Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

Setup

In each shell session, run:

source bin/setup.sh

to set environment variables.

Install jq (if not already installed): https://stedolan.github.io/jq/

Install maven (if not already installed):

sh bin/install_mvn.sh

Install python dependencies:

conda create -n env_ghhc pip python=3.6
source activate env_ghhc
# Either (linux)
wget https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.12.0-cp36-cp36m-linux_x86_64.whl
pip install tensorflow-1.12.0-cp36-cp36m-linux_x86_64.whl
# or (mac)
wget https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.12.0-py3-none-any.whl
pip install tensorflow-1.12.0-py3-none-any.whl
conda install scikit-learn
conda install tensorflow-base=1.13.1

See env.yml for a complete list of dependencies if you run into issues with the above.

Build scala code:

mvn clean package

Note you may need to set JAVA_HOME and JAVA_HOME_8 on your system.

ALOI and Glass are downloadable from: https://github.com/iesl/xcluster

Covtype is available here: https://archive.ics.uci.edu/ml/datasets/covertype

Contact me regarding the ImageNet data.

Clustering Experiments

Step 1. Building triples for inference

Sample triples of datapoints that will be used for inference:

On a compute machine:

sh bin/sample_triples.sh config/glass/build_samples.json

Using slurm cluster manager:

sh bin/launch_samples.sh config/glass/build_samples.json <partition-name-here>

Note the above example is for the glass dataset, but the same procedure and scripts are available for all datasets.

Step 2. Run Inference

Update the representations of the internal nodes of the tree structure.

On a compute machine:

sh bin/run_inf.sh config/glass/glass.json

Using slurm cluster manager:

sh bin/launch_inf.sh config/glass/glass.json <partition-name-here>

This will create a directory in exp_out/dataset_name/ghhc/timestamp containing the internal node parameters and configs to run the next step. For example, this would create the following:

exp_out/glass/ghhc/2019-11-29-20-13-29-alg_name=ghhc-init_method=randompts-tree_learning_rate=0.01-loss=sigmoid-lca_type=conditional-num_samples=50000-batch_size=500-struct_prior=pcn

Step 3. Final clustering

Produce assignment of datapoints in the hierarchical clustering and produce internal structure.

For datasets other than ImageNet:

On a compute machine:

# Generally:
sh bin/run_predict_only.sh exp_out/data/ghhc/timestap/config.json data/datasetname/data_to_run_on.tsv

# For example:
sh bin/run_predict_only.sh exp_out/glass/ghhc/2019-11-29-20-13-29-alg_name=ghhc-init_method=randompts-tree_learning_rate=0.01-loss=sigmoid-lca_type=conditional-num_samples=50000-batch_size=500-struct_prior=pcn/config.json data/glass/glass.tsv

Using slurm cluster manager:

sh bin/launch_predict_only.sh exp_out/glass/ghhc/2019-11-29-20-13-29-alg_name=ghhc-init_method=randompts-tree_learning_rate=0.01-loss=sigmoid-lca_type=conditional-num_samples=50000-batch_size=500-struct_prior=pcn/config.json data/glass/glass.tsv <partition-name>

This will create a file: exp_out/glass/ghhc/2019-11-29-20-13-29-alg_name=ghhc-init_method=randompts-tree_learning_rate=0.01-loss=sigmoid-lca_type=conditional-num_samples=50000-batch_size=500-struct_prior=pcn/results/tree.tsv which can be evaluated using

sh bin/score_tree.sh exp_out/glass/ghhc/2019-11-29-20-13-29-alg_name=ghhc-init_method=randompts-tree_learning_rate=0.01-loss=sigmoid-lca_type=conditional-num_samples=50000-batch_size=500-struct_prior=pcn/results/tree.tsv

When evaluating the tree for covtype, use the expected dendrogram purity point id file from the data directory:

sh bin/score_tree.sh /path/to/tree.tsv ghhc covtype $num_threads data/covtype.evalpts5k

For ImageNet:

 sh bin/launch_predict_only_imagenet.sh exp_out/ilsvrc/ghhc/2019-11-29-08-04-23-alg_name=ghhc-init_method=randhac-tree_learning_rate=0.01-loss=sigmoid-lca_type=conditional-num_samples=50000-batch_size=100-struct_prior=pcn/config.json data/ilsvrc/ilsvrc12.tsv.1 cpu 32000

This assumes that the ImageNet data file has been split into 13 files:

data/ilsvrc/ilsvrc12.tsv.1.split_aa
data/ilsvrc/ilsvrc12.tsv.1.split_ab
...
data/ilsvrc/ilsvrc12.tsv.1.split_am

Then when all jobs finish, concatenate results:

sh bin/cat_imagenet_tree.sh exp_out/ilsvrc/ghhc/2019-11-29-08-04-23-alg_name=ghhc-init_method=randhac-tree_learning_rate=0.01-loss=sigmoid-lca_type=conditional-num_samples=50000-batch_size=100-struct_prior=pcn/results/

This will create a file containing the entire tree:

exp_out/ilsvrc/ghhc/2019-11-29-08-04-23-alg_name=ghhc-init_method=randhac-tree_learning_rate=0.01-loss=sigmoid-lca_type=conditional-num_samples=50000-batch_size=100-struct_prior=pcn/results/tree.tsv

which can be evaluated using:

sh bin/score_tree.sh exp_out/ilsvrc/ghhc/2019-11-29-08-04-23-alg_name=ghhc-init_method=randhac-tree_learning_rate=0.01-loss=sigmoid-lca_type=conditional-num_samples=50000-batch_size=100-struct_prior=pcn/results/tree.tsv ghhc ilsvrc12 $num_threads data/imagenet_eval_pts.ids

Citation

@inproceedings{Monath:2019:GHC:3292500.3330997,
     author = {Monath, Nicholas and Zaheer, Manzil and Silva, Daniel and McCallum, Andrew and Ahmed, Amr},
     title = {Gradient-based Hierarchical Clustering Using Continuous Representations of Trees in Hyperbolic Space},
     booktitle = {Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
     series = {KDD '19},
     year = {2019},
     isbn = {978-1-4503-6201-6},
     location = {Anchorage, AK, USA},
     pages = {714--722},
     numpages = {9},
     url = {http://doi.acm.org/10.1145/3292500.3330997},
     doi = {10.1145/3292500.3330997},
     acmid = {3330997},
     publisher = {ACM},
     address = {New York, NY, USA},
     keywords = {clustering, gradient-based clustering, hierarchical clustering},
}

License

Apache License, Version 2.0

Questions / Comments / Bugs / Issues

Please contact Nicholas Monath ([email protected]).

Also, please contact me for access to the data.

Owner
Nicholas Monath
Nicholas Monath
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

38 Aug 31, 2022
NVIDIA Deep Learning Examples for Tensor Cores

NVIDIA Deep Learning Examples for Tensor Cores Introduction This repository provides State-of-the-Art Deep Learning examples that are easy to train an

NVIDIA Corporation 10k Dec 31, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking PoseRBPF Paper Self-supervision Paper Pose Estimation Video Robot Manipulati

NVIDIA Research Projects 107 Dec 25, 2022
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

31 Dec 05, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022
A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python

Mesh-Keys A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python Have been seeing alot

Joseph 53 Dec 13, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

Adelaide Intelligent Machines (AIM) Group 3k Jan 02, 2023
LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant Self-At

OxCSML (Oxford Computational Statistics and Machine Learning) 50 Dec 28, 2022
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-ba

PyKale 370 Dec 27, 2022
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022
This is a custom made virus code in python, using tkinter module.

skeleterrorBetaV0.1-Virus-code This is a custom made virus code in python, using tkinter module. This virus is not harmful to the computer, it only ma

AR 0 Nov 21, 2022