Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

Overview

gHHC

Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

Setup

In each shell session, run:

source bin/setup.sh

to set environment variables.

Install jq (if not already installed): https://stedolan.github.io/jq/

Install maven (if not already installed):

sh bin/install_mvn.sh

Install python dependencies:

conda create -n env_ghhc pip python=3.6
source activate env_ghhc
# Either (linux)
wget https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.12.0-cp36-cp36m-linux_x86_64.whl
pip install tensorflow-1.12.0-cp36-cp36m-linux_x86_64.whl
# or (mac)
wget https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.12.0-py3-none-any.whl
pip install tensorflow-1.12.0-py3-none-any.whl
conda install scikit-learn
conda install tensorflow-base=1.13.1

See env.yml for a complete list of dependencies if you run into issues with the above.

Build scala code:

mvn clean package

Note you may need to set JAVA_HOME and JAVA_HOME_8 on your system.

ALOI and Glass are downloadable from: https://github.com/iesl/xcluster

Covtype is available here: https://archive.ics.uci.edu/ml/datasets/covertype

Contact me regarding the ImageNet data.

Clustering Experiments

Step 1. Building triples for inference

Sample triples of datapoints that will be used for inference:

On a compute machine:

sh bin/sample_triples.sh config/glass/build_samples.json

Using slurm cluster manager:

sh bin/launch_samples.sh config/glass/build_samples.json <partition-name-here>

Note the above example is for the glass dataset, but the same procedure and scripts are available for all datasets.

Step 2. Run Inference

Update the representations of the internal nodes of the tree structure.

On a compute machine:

sh bin/run_inf.sh config/glass/glass.json

Using slurm cluster manager:

sh bin/launch_inf.sh config/glass/glass.json <partition-name-here>

This will create a directory in exp_out/dataset_name/ghhc/timestamp containing the internal node parameters and configs to run the next step. For example, this would create the following:

exp_out/glass/ghhc/2019-11-29-20-13-29-alg_name=ghhc-init_method=randompts-tree_learning_rate=0.01-loss=sigmoid-lca_type=conditional-num_samples=50000-batch_size=500-struct_prior=pcn

Step 3. Final clustering

Produce assignment of datapoints in the hierarchical clustering and produce internal structure.

For datasets other than ImageNet:

On a compute machine:

# Generally:
sh bin/run_predict_only.sh exp_out/data/ghhc/timestap/config.json data/datasetname/data_to_run_on.tsv

# For example:
sh bin/run_predict_only.sh exp_out/glass/ghhc/2019-11-29-20-13-29-alg_name=ghhc-init_method=randompts-tree_learning_rate=0.01-loss=sigmoid-lca_type=conditional-num_samples=50000-batch_size=500-struct_prior=pcn/config.json data/glass/glass.tsv

Using slurm cluster manager:

sh bin/launch_predict_only.sh exp_out/glass/ghhc/2019-11-29-20-13-29-alg_name=ghhc-init_method=randompts-tree_learning_rate=0.01-loss=sigmoid-lca_type=conditional-num_samples=50000-batch_size=500-struct_prior=pcn/config.json data/glass/glass.tsv <partition-name>

This will create a file: exp_out/glass/ghhc/2019-11-29-20-13-29-alg_name=ghhc-init_method=randompts-tree_learning_rate=0.01-loss=sigmoid-lca_type=conditional-num_samples=50000-batch_size=500-struct_prior=pcn/results/tree.tsv which can be evaluated using

sh bin/score_tree.sh exp_out/glass/ghhc/2019-11-29-20-13-29-alg_name=ghhc-init_method=randompts-tree_learning_rate=0.01-loss=sigmoid-lca_type=conditional-num_samples=50000-batch_size=500-struct_prior=pcn/results/tree.tsv

When evaluating the tree for covtype, use the expected dendrogram purity point id file from the data directory:

sh bin/score_tree.sh /path/to/tree.tsv ghhc covtype $num_threads data/covtype.evalpts5k

For ImageNet:

 sh bin/launch_predict_only_imagenet.sh exp_out/ilsvrc/ghhc/2019-11-29-08-04-23-alg_name=ghhc-init_method=randhac-tree_learning_rate=0.01-loss=sigmoid-lca_type=conditional-num_samples=50000-batch_size=100-struct_prior=pcn/config.json data/ilsvrc/ilsvrc12.tsv.1 cpu 32000

This assumes that the ImageNet data file has been split into 13 files:

data/ilsvrc/ilsvrc12.tsv.1.split_aa
data/ilsvrc/ilsvrc12.tsv.1.split_ab
...
data/ilsvrc/ilsvrc12.tsv.1.split_am

Then when all jobs finish, concatenate results:

sh bin/cat_imagenet_tree.sh exp_out/ilsvrc/ghhc/2019-11-29-08-04-23-alg_name=ghhc-init_method=randhac-tree_learning_rate=0.01-loss=sigmoid-lca_type=conditional-num_samples=50000-batch_size=100-struct_prior=pcn/results/

This will create a file containing the entire tree:

exp_out/ilsvrc/ghhc/2019-11-29-08-04-23-alg_name=ghhc-init_method=randhac-tree_learning_rate=0.01-loss=sigmoid-lca_type=conditional-num_samples=50000-batch_size=100-struct_prior=pcn/results/tree.tsv

which can be evaluated using:

sh bin/score_tree.sh exp_out/ilsvrc/ghhc/2019-11-29-08-04-23-alg_name=ghhc-init_method=randhac-tree_learning_rate=0.01-loss=sigmoid-lca_type=conditional-num_samples=50000-batch_size=100-struct_prior=pcn/results/tree.tsv ghhc ilsvrc12 $num_threads data/imagenet_eval_pts.ids

Citation

@inproceedings{Monath:2019:GHC:3292500.3330997,
     author = {Monath, Nicholas and Zaheer, Manzil and Silva, Daniel and McCallum, Andrew and Ahmed, Amr},
     title = {Gradient-based Hierarchical Clustering Using Continuous Representations of Trees in Hyperbolic Space},
     booktitle = {Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
     series = {KDD '19},
     year = {2019},
     isbn = {978-1-4503-6201-6},
     location = {Anchorage, AK, USA},
     pages = {714--722},
     numpages = {9},
     url = {http://doi.acm.org/10.1145/3292500.3330997},
     doi = {10.1145/3292500.3330997},
     acmid = {3330997},
     publisher = {ACM},
     address = {New York, NY, USA},
     keywords = {clustering, gradient-based clustering, hierarchical clustering},
}

License

Apache License, Version 2.0

Questions / Comments / Bugs / Issues

Please contact Nicholas Monath ([email protected]).

Also, please contact me for access to the data.

Owner
Nicholas Monath
Nicholas Monath
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022
Multi agent DDPG algorithm written in Python + Pytorch

Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.

Rogier Wachters 2 Feb 26, 2022
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Jamie J. Seol 22 Dec 13, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
Source code for the paper: Variance-Aware Machine Translation Test Sets (NeurIPS 2021 Datasets and Benchmarks Track)

Variance-Aware-MT-Test-Sets Variance-Aware Machine Translation Test Sets License See LICENSE. We follow the data licensing plan as the same as the WMT

NLP2CT Lab, University of Macau 5 Dec 21, 2021
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
Process JSON files for neural recording sessions using Medtronic's BrainSense Percept PC neurostimulator

percept_processing This code processes JSON files for streamed neural data using Medtronic's Percept PC neurostimulator with BrainSense Technology for

Maria Olaru 3 Jun 06, 2022
Lipschitz-constrained Unsupervised Skill Discovery

Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong

Seohong Park 17 Dec 18, 2022
A Python package for causal inference using Synthetic Controls

Synthetic Control Methods A Python package for causal inference using synthetic controls This Python package implements a class of approaches to estim

Oscar Engelbrektson 107 Dec 28, 2022
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)

NAS-FCOS: Fast Neural Architecture Search for Object Detection This project hosts the train and inference code with pretrained model for implementing

Ning Wang 180 Dec 06, 2022
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
A note taker for NVDA. Allows the user to create, edit, view, manage and export notes to different formats.

Quick Notetaker add-on for NVDA The Quick Notetaker add-on is a wonderful tool which allows writing notes quickly and easily anytime and from any app

5 Dec 06, 2022
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model

SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R

HUST-The Tan Lab 4 Dec 05, 2022
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
Memory efficient transducer loss computation

Introduction This project implements the optimization techniques proposed in Improving RNN Transducer Modeling for End-to-End Speech Recognition to re

Fangjun Kuang 51 Nov 25, 2022