A library that can print Python objects in human readable format

Overview

objprint

build coverage pypi support-version license commit

A library that can print Python objects in human readable format

Install

pip install objprint

Usage

op

Use op() (or objprint()) to print objects.

from objprint import op

class Position:
    def __init__(self, x, y):
        self.x = x
        self.y = y

class Player:
    def __init__(self):
        self.name = "Alice"
        self.age = 18
        self.items = ["axe", "armor"]
        self.coins = {"gold": 1, "silver": 33, "bronze": 57}
        self.position = Position(3, 5)

op(Player())
<Player 0x7fe44e1e3070
  .age = 18,
  .coins = {'bronze': 57, 'gold': 1, 'silver': 33},
  .items = ['axe', 'armor'],
  .name = 'Alice',
  .position = <Position
    .x = 3,
    .y = 5
  >
>

You can print multiple objects just like print, except op will print them in separate lines

op([1, 2], {'a': 1})
[1, 2]
{'a': 1}

add_objprint

If you want to use print() to print your object, you can also use the class decorator add_objprint to add __str__ method for your class.

from objprint import add_objprint

class Position:
    def __init__(self, x, y):
        self.x = x
        self.y = y

@add_objprint
class Player:
    def __init__(self):
        self.name = "Alice"
        self.age = 18
        self.items = ["axe", "armor"]
        self.coins = {"gold": 1, "silver": 33, "bronze": 57}
        self.position = Position(3, 5)

# This will print the same thing as above
print(Player())

objstr

If you want the str representation of the object, instead of printing it on the screen, you can use objstr function

from objprint import objstr

s = objstr(my_object)

objjson

objprint supports print objects to json to make it easier to serialze an object.

objjson returns a jsonifiable object that can be dumped with json.dumps

from objprint import objjson

json_obj = objjson(Player())

print(json.dumps(json_obj, indent=2))
{
  ".type": "Player",
  "name": "Alice",
  "age": 18,
  "items": [
    "axe",
    "armor"
  ],
  "coins": {
    "gold": 1,
    "silver": 33,
    "bronze": 57
  },
  "position": {
    ".type": "Position",
    "x": 3,
    "y": 5
  }
}

You can use op to print in json format directly with format="json". You can pass in argument for json.dumps

op(Player(), format="json", indent=2)

add_objprint also works with format="json"

@add_objprint(format="json", indent=2)
class Player:
    pass

include/exclude attributes

You can include/exclude attributes using regular expression so objprint will only print out the attributes you are interested in.

op(Player(), include=["name"])
<Player
  .name = 'Alice'
>
op(Player(), exclude=[".*s"])
<Player 0x7fe44e1e3070
  .name = 'Alice',
  .age = 18,
  .position = <Position
    .x = 3,
    .y = 5
  >
>

If you specify both include and exclude, it will do a inclusive check first, then filter out the attributes that match exclusive check.

include and exclude arguments work on objprint, objstr and @add_objprint.

config

objprint formats the output based on some configs

  • config_name(default_value) - this config's explanation
  • depth(100) - how deep objprint goes into nested data structures
  • indent(2) - the indentation
  • width(80) - the maximum width a data structure will be presented as a single line
  • elements(-1) - the maximum number of elements that will be displayed, -1 means no restriction
  • color(True) - whether to use colored scheme
  • skip_recursion(True) - whether skip printing recursive data, which would cause infinite recursion without depth constraint
  • honor_existing(True) - whether to use the existing user defined __repr__ or __str__ method

You can set the configs globally using config function

from objprint import config

config(indent=4)

Or you can do a one time config by passing the arguments into objprint function

from objprint import op

op(var, indent=4)

install

Maybe you don't want to import op in every single file that you want to use. You can use install to make it globally accessible

from objprint import install

# Now you can use op() in any file
install()

# You can specify a name for objprint()
install("my_print")
my_print(my_object)

Bugs/Requests

Please send bug reports and feature requests through github issue tracker.

License

Copyright Tian Gao, 2020-2021.

Distributed under the terms of the Apache 2.0 license.

Comments
  • 在面对继承自pydantic里BaseModel的实例时无法得到预期的输出

    在面对继承自pydantic里BaseModel的实例时无法得到预期的输出

    如题

    from pydantic import BaseModel
    from objprint import op
    
    
    class pyt_class(BaseModel):
        x: int
        y: int
    
    
    obj_test = pyt_class(x=0, y=1)
    
    op(obj_test)
    print(obj_test)
    

    他打印:

    x=0 y=1
    x=0 y=1
    

    希望后续更新能够支持! (B站码农高天的视频我是期期都看,期期都三连)

    opened by Sclock 3
  • Also print the actual expression whose value is being printed

    Also print the actual expression whose value is being printed

    The https://github.com/gruns/icecream lib has an useful feature where it also prints the expression. Please see the following example:

    d = {'key': {1: 'one'}}
    ic(d['key'][1])
    
    class klass():
        attr = 'yep'
    ic(klass.attr)
    

    It prints:

    ic| d['key'][1]: 'one'
    ic| klass.attr: 'yep'
    

    As you can see icecream lib also prints the expression d['key'][1]. Is it possible to add this feature? This is the only feature holding me back from switching to objprint.

    opened by riyadparvez 3
  • Duplicate output when op() argument wasn't an object.

    Duplicate output when op() argument wasn't an object.

    import hashlib op(hashlib) <module 'hashlib' from 'C:\Users\guojoan\AppData\Local\Programs\Python\Python310\lib\hashlib.py'> <module 'hashlib' from 'C:\Users\guojoan\AppData\Local\Programs\Python\Python310\lib\hashlib.py'>

    a = [] a.append(a) op(a) [[ ... ]] [[...]]

    and so on

    opened by CokeStudios 2
  • type 类创建问题

    type 类创建问题

    通过type 构建的 class 通过 op 正确打印,这个feature 能否实现?

    from objprint import op
    
    class Action:
        pass
    
    def Category(label):
        return type("MCategory", (Action,), {"label": label,
                                            "__type__": "category"})
    
    
    class ECategory(Action):
        def __init__(self,label):
            self.label = label
            self.__type__ = 'category'
    
    
    
    mm = Category('test')
    nn = ECategory('test')
    op(mm)
    op(nn)
    
    >> <class '__main__.MCategory'>
    >> <UCategory 0x1f2da7b2b00
    >>   .label = 'test'
    >> >
    
    
    opened by wuqingjing2010 2
  • 如何实现“增量”打印?

    如何实现“增量”打印?

    您好!我正在使用objprint跟踪迭代过程,代码大致如下:

    for i in range(i_max):
        obj.step()
        op(obj)
    

    已知obj中有些变量在执行step后是不发生改变的,在第二次到最后一次调用op时,是否能够不打印这些变量?也就是只打印发生了变化的变量?

    opened by Saltsmart 2
  • weird escaped characters in jupyter notebook's output

    weird escaped characters in jupyter notebook's output

    I used pyreadstat module to read a simple SAS file. the code goes like this in jupyter notebook

    import pyreadstat as pyrs
    from objprint import op
    
    sas_path = './test_sas/foo.sas7bdat'
    df, meta = pyrs.read_sas7bdat(sas_path, metadataonly=True)
    # just wanted to check out what meta contains 
    op(meta)
    

    the brief output of current cell seems normal

    Output exceeds the [size limit]. Open the full output data[ in a text editor]
    <metadata_container 0x1bcf4bfa3e0
      .column_labels = [
        'projectid',
        'project',
    ...
        'project': '$'
      },
      .variable_value_labels = {}
    >
    <pyreadstat._readstat_parser.metadata_container at 0x1bcf4bfa3e0>
    

    but after I clicked "in a text editor", the first lines look like this:

    <metadata_container 0x1bcf4bfa3e0
      .column_labels = [
        'projectid',
        'project',
    

    the weird characters actually look like small suqares contains 3 small letters ESC in the text editor.

    opened by Asuralf 2
  • 在面对Enum对象时,输出的结果不符合预期。

    在面对Enum对象时,输出的结果不符合预期。

    测试代码:

    from enum import Enum
    from objprint import op,add_objprint
    
    class temp_a(Enum):
        a = 1
    
    @add_objprint
    class temp_b(Enum):
        b = 1
    
    print("temp_a:\n",temp_a,"\n")
    
    print("temp_a.a:\n",temp_a.a,"\n")
    
    print("op_temp_a:")
    op(temp_a)
    print("\n")
    
    print("op_temp_a.a:")
    op(temp_a.a)
    print("\n")
    
    print("================================================================\n")
    
    print("temp_b:\n",temp_b,"\n")
    
    print("temp_b.b:\n",temp_b.b,"\n")
    
    print("op_temp_b:")
    op(temp_b)
    print("\n")
    
    print("op_temp_b.b:")
    op(temp_b.b)
    print("\n")
    

    输出:

    temp_a:
     <enum 'temp_a'> 
    
    temp_a.a:
     temp_a.a
    
    op_temp_a:
    <enum 'temp_a'>
    
    
    op_temp_a.a:
    temp_a.a
    
    
    ================================================================
    
    temp_b:
     <enum 'temp_b'>
    
    temp_b.b:
     <temp_b 0x24a740c2ee0
      .__objclass__ = <enum 'temp_b'>,
      ._name_ = 'b',
      ._value_ = 1
    >
    
    op_temp_b:
    <enum 'temp_b'>
    
    
    op_temp_b.b:
    <temp_b 0x24a740c2ee0
      .__objclass__ = <enum 'temp_b'>,
      ._name_ = 'b',
      ._value_ = 1
    >
    

    符合直觉的结果应该是:

    class temp_a(Enum):
        a = 1
    op(temp_a)
    

    输出:

     <temp_a 0xFFFFFFFF
      .__objclass__ = <enum 'temp_a'>,
      .temp_a.a = < xxxxxxx
          ._name_ = 'b',
          ._value_ = 1
      >
    >
    
    opened by Sclock 2
  • 大佬,objprint可以打印出函数的内容吗?类似于js中console.log()方法。

    大佬,objprint可以打印出函数的内容吗?类似于js中console.log()方法。

    //JavaScript function ad(a, b) {

    return a + b;
    

    }

    console.log(ad.toString())

    //输出 // function ad(a, b) { // // return a + b; // }

    //python def ad(a,b): return a+b print(ad)

    输出

    <function ad at 0x000002511B318550>

    opened by xuxiaobo-bobo 1
  • Change the output order of line number and arg name

    Change the output order of line number and arg name

    For the following example:

    from objprint import config, install, objjson, op
    
    config(line_number=True)
    config(arg_name=True)
    
    x = 1
    op(x)
    

    This is the output right now:

    x:
    <module> (/path/to/objprint-test.py:7)
    1
    

    What I think more intuitive is argument name followed by the value and the file and line number at the top. In this particular case:

    <module> (/path/to/objprint-test.py:7)
    x:
    1
    

    Any thoughts?

    opened by riyadparvez 1
  • question: how to use install()

    question: how to use install()

    I created two python file to play with the install() feature:

    temp1.py:

    from objprint import op, install
    
    # Now you can use op() in any file
    install()
    

    temp2.py:

    op("hello")
    

    But run the temp2.py, it throws error : NameError: name 'op' is not defined What is the correct usage of install() ? Thanks !

    opened by wwdok 1
  • 在打印链表的时候结构不是很清晰

    在打印链表的时候结构不是很清晰

    打印链表会输出

    <Node 0x18136a4bd30
      .next = <Node 0x18136a4b3d0
        .next = <Node 0x18136dd5750
          .next = <Node 0x18136dd5930
            .next = <Node 0x18136dd5810
              .next = <Node 0x18136dd5870
                .next = None,
                .value = 'node_5'
              >,
              .value = 'node_4'
            >,
            .value = 'node_3'
          >,
          .value = 'node_2'
        >,
        .value = 'node_1'
      >,
      .value = 'Head'
    >
    

    可以考虑在打印属性为对象的属性的时候缩进幅度大一些

    <Node 0x18136a4bd30
        .next = <Node 0x18136a4b3d0
                .next = <Node 0x18136dd5750
                        .next = <Node 0x18136dd5930
                                    .next = <Node 0x18136dd5810
                                            .next = <Node 0x18136dd5870
                                                    .next = None,
                                                    .value = 'node_5'
                                            >,
                                            .value = 'node_4'
                                    >,
                                    .value = 'node_3'
                        >,
                        .value = 'node_2'
                >,
                .value = 'node_1'
         >,
         .value = 'Head'
    >
    

    或者结构修改一下

    <Node 0x18136a4bd30 ->  .next = <Node 0x18136a4b3d0 ->  .next = <Node 0x18136dd5750 ->  .next = <Node 0x18136dd5930 ->  .next = <Node 0x18136dd5810 ->  .next = <Node 0x18136dd5870 ->  .next = None,
                                                                                                                                                                                            .value = 'node_5'
                                                                                                                                                                                            >,         
                                                                                                                                                            .value = 'node_4'
                                                                                                                                                            >,
                                                                                                                            .value = 'node_3'
                                                                                                                            >,
                                                                                            .value = 'node_2'
                                                                                            >,
                                                            .value = 'node_1'
                                                            >,
                            .value = 'Head'
                            >
    

    简单的建议,希望能优化一下!

    opened by Sclock 1
  • pydantic.BaseModel 对象无法正确打印

    pydantic.BaseModel 对象无法正确打印

    我在使用 pydantic + objprint,打印对象使用了 #52 中的方法,但程序在 op 处阻塞住。

    from objprint import op
    from pydantic import BaseModel
    
    
    class A(BaseModel):
        a: int
    
    
    obj = A(a=1)
    op(obj, honor_existing=False)
    
    opened by Eric-fuyc 2
  • Detect repl for returning objects

    Detect repl for returning objects

    Now op() returns the object it prints to make calling chain possible. But in repl, that will print two instances. We should fix that for a better user experience.

    opened by gaogaotiantian 0
Releases(0.2.2)
Owner
Author of VizTracer, watchpoints and objprint
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
Computer Vision Paper Reviews with Key Summary of paper, End to End Code Practice and Jupyter Notebook converted papers

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 The repository provides 100+ Pap

Jonathan Choi 2 Mar 17, 2022
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
Artificial Intelligence search algorithm base on Pacman

Pacman Search Artificial Intelligence search algorithm base on Pacman Source The Pacman Projects by the University of California, Berkeley. Layouts Di

Day Fundora 6 Nov 17, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
Using deep learning to predict gene structures of the coding genes in DNA sequences of Arabidopsis thaliana

DeepGeneAnnotator: A tool to annotate the gene in the genome The master thesis of the "Using deep learning to predict gene structures of the coding ge

Ching-Tien Wang 3 Sep 09, 2022
Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning Installation

Pytorch Lightning 1.6k Jan 08, 2023
Code and experiments for "Deep Neural Networks for Rank Consistent Ordinal Regression based on Conditional Probabilities"

corn-ordinal-neuralnet This repository contains the orginal model code and experiment logs for the paper "Deep Neural Networks for Rank Consistent Ord

Raschka Research Group 14 Dec 27, 2022
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022
Individual Treatment Effect Estimation

CAPE Individual Treatment Effect Estimation Run CAPE python train_causal.py --loop 10 -m cape_cau -d NI --i_t 1 Run a baseline model python train_cau

S. Deng 4 Sep 02, 2022
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "

kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer

ping 543f 1 Dec 05, 2022
BrainGNN - A deep learning model for data-driven discovery of functional connectivity

A deep learning model for data-driven discovery of functional connectivity https://doi.org/10.3390/a14030075 Usman Mahmood, Zengin Fu, Vince D. Calhou

Usman Mahmood 3 Aug 28, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
Creating Artificial Life with Reinforcement Learning

Although Evolutionary Algorithms have shown to result in interesting behavior, they focus on learning across generations whereas behavior could also be learned during ones lifetime.

Maarten Grootendorst 49 Dec 21, 2022