Can we learn gradients by Hamiltonian Neural Networks?

Related tags

Deep LearningOPT-ML
Overview

Can we learn gradients by Hamiltonian Neural Networks?

This project was carried out as part of the Optimization for Machine Learning course (CS-439) at EPFL in the spring 2020 semester.

Team:

The No Free Lunch Theorem suggests that there is no universally best learner and restricting the hypothesis class by introducing our prior knowledge about the task we are solving is the only way we can improve the state of affairs. This motivates the use of the learned optimizer for the given task and the use of different regularization methods. For instance, the Heavy Ball method considers the gradient descent procedure as a sliding of a heavy ball on the surface of the loss function, which results in faster convergence. More generally, one can consider the gradient descent procedure as a movement of some object on the surface of the loss function under different forces: potential, dissipative (friction) and other external forces. Such a physical process can be described by port-Hamiltonian system of equations. In this work, we propose to learn the optimizer and impose the physical laws governed by the port-Hamiltonian system of equations into the optimization algorithm to provide implicit bias which acts as regularization and helps to find the better generalization optimums. We impose physical structure by learning the gradients of the parameters: gradients are the solutions of the port-Hamiltonian system, thus their dynamics is governed by the physical laws, that are going to be learned.

To summarize, we propose a new framework based on Hamiltonian Neural Networks which is used to learn and improve gradients for the gradient descent step. Our experiments on an artificial task and MNIST dataset demonstrate that our method is able to outperform many basic optimizers and achieve comparable performance to the previous LSTM-based one. Furthermore, we explore how methods can be transferred to other architectures with different hyper-parameters, e.g. activation functions. To this end, we train HNN-based optimizer for a small neural network with the sigmoid activation on MNIST dataset and then train the same network but with the ReLU activation using the already trained optimizer. The results show that our method is transferable in this case unlike the LSTM-based optimizer.

To test optimizers we use the following tasks:

  • Quadratic functions (details are given in main.ipynb)
  • MNIST

Prerequisites

  • Ubuntu
  • Python 3
  • NVIDIA GPU

Installation

  • Clone this repo:
git clone https://github.com/AfoninAndrei/OPT-ML.git
cd OPT-ML
  • Install dependencies:
pip install requirements.txt

Usage

  • To reproduce the results: simply go through main.ipynb. Or run it on Colab
  • All implementations are in src.

Method

In fact, gradient descent is fundamentally a sequence of updates (from the output layer of the neural net back to the input), in between which a state must be stored. Thus we can think of an optimizer as a simple feedforward network (or RNN, etc.) that gives us nest update each iteration. The loss of the optimizer is the sum (weights are set to 1 in our experiments) of the losses of the optimizee as it learns.

The plan is thus to use gradient descent on parameters of model-based optimizers in order to minimize this loss, which should give us an optimizer that is capable of optimizing efficiently.

As the paper mentions, it is important that the gradients in dashed lines in the figure below are not propagated during gradient descent.

Basically this is nothing we wouldn't expect: the loss of the optimizer neural net is simply the average training loss of the optimizee as it is trained by the optimizer. The optimizer takes in the gradient of the current coordinate of the optimizee as well as its previous state, and outputs a suggested update that we hope will reduce the optimizee's loss as fast as possible.

Optimization is done coordinatewise such that to optimize each parameter by its own state. Any momentum or energy term used in the optimization is based on each parameter's own history, independent on others. Each parameter's optimization state is not shared across other coordinates.

In our approach, the role of the optimizer is given to a Hamiltonian Neural Network which is presented in figure below:

Acknowledgement

Building Ellee — A GPT-3 and Computer Vision Powered Talking Robotic Teddy Bear With Human Level Conversation Intelligence

Using an object detection and facial recognition system built on MobileNetSSDV2 and Dlib and running on an NVIDIA Jetson Nano, a GPT-3 model, Google Speech Recognition, Amazon Polly and servo motors,

24 Oct 26, 2022
PyTorch implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 13.4k Jan 08, 2023
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
E2VID_ROS - E2VID_ROS: E2VID to a real-time system

E2VID_ROS Introduce We extend E2VID to a real-time system. Because Python ROS ca

Robin Shaun 7 Apr 17, 2022
Visualizing Yolov5's layers using GradCam

YOLO-V5 GRADCAM I constantly desired to know to which part of an object the object-detection models pay more attention. So I searched for it, but I di

Pooya Mohammadi Kazaj 200 Jan 01, 2023
Pytorch implementation of BRECQ, ICLR 2021

BRECQ Pytorch implementation of BRECQ, ICLR 2021 @inproceedings{ li&gong2021brecq, title={BRECQ: Pushing the Limit of Post-Training Quantization by Bl

Yuhang Li 148 Dec 28, 2022
Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Time-Sensitive-QA The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset

wenhu chen 35 Nov 14, 2022
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

<a href=[email protected]"> 11 Dec 03, 2022
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021
Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon Patiño 24 Oct 22, 2022
A project to make Amazon Echo respond to sign language using your webcam

Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p

Abhishek Singh 444 Jan 03, 2023
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022
Multi-Scale Progressive Fusion Network for Single Image Deraining

Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN) This is an implementation of the MSPFN model proposed in the paper (Multi-Sc

Kuijiang 128 Nov 21, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022