Random Walk Graph Neural Networks

Overview

Random Walk Graph Neural Networks

This repository is the official implementation of Random Walk Graph Neural Networks.

Requirements

Code is written in Python 3.6 and requires:

  • PyTorch 1.5
  • scikit-learn 0.21

Datasets

Use the following link to download datasets:

https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

Extract the datasets into the datasets folder.

Training and Evaluation

To train and evaluate the model in the paper, run this command:

python main.py --dataset <dataset_name> 

Example

To train and evaluate the model on MUTAG, first specify the hyperparameters in the main.py file and then run:

python main.py --dataset MUTAG --use-node-labels

Results

Our model achieves the following performance on standard graph classification datasets (note that we used the evaluation procedure and same data splits as in this paper):

Model name MUTAG D&D NCI1 PROTEINS ENZYMES
SP 80.2 (± 6.5) 78.1 (± 4.1) 72.7 (± 1.4) 75.3 (± 3.8) 38.3 (± 8.0)
GR 80.8 (± 6.4) 75.4 (± 3.4) 61.8 (± 1.7) 71.6 (± 3.1) 25.1 (± 4.4)
WL 84.6 (± 8.3) 78.1 (± 2.4) 84.8 (± 2.5) 73.8 (± 4.4) 50.3 (± 5.7)
DGCNN 84.0 (± 6.7) 76.6 (± 4.3) 76.4 (± 1.7) 72.9 (± 3.5) 38.9 (± 5.7)
DiffPool 79.8 (± 7.1) 75.0 (± 3.5) 76.9 (± 1.9) 73.7 (± 3.5) 59.5 (± 5.6)
ECC 75.4 (± 6.2) 72.6 (± 4.1) 76.2 (± 1.4) 72.3 (± 3.4) 29.5 (± 8.2)
GIN 84.7 (± 6.7) 75.3 (± 2.9) 80.0 (± 1.4) 73.3 (± 4.0) 59.6 (± 4.5)
GraphSAGE 83.6 (± 9.6) 72.9 (± 2.0) 76.0 (± 1.8) 73.0 (± 4.5) 58.2 (± 6.0)
1-step RWNN 89.2 (± 4.3) 77.6 (± 4.7) 71.4 (± 1.8) 74.7 (± 3.3) 56.7 (± 5.2)
2-step RWNN 88.1 (± 4.8) 76.9 (± 4.6) 73.0 (± 2.0) 74.1 (± 2.8) 57.4 (± 4.9)
3-step RWNN 88.6 (± 4.1) 77.4 (± 4.9) 73.9 (± 1.3) 74.3 (± 3.3) 57.6 (± 6.3)
Model name IMDB-BINARY IMDB-MULTI REDDIT-BINARY REDDIT-MULTI-5K COLLAB
SP 57.7 (± 4.1) 39.8 (± 3.7) 89.0 (± 1.0) 51.1 (± 2.2) 79.9 (± 2.7)
GR 63.3 (± 2.7) 39.6 (± 3.0) 76.6 (± 3.3) 38.1 (± 2.3) 71.1 (± 1.4)
WL 72.8 (± 4.5) 51.2 (± 6.5) 74.9 (± 1.8) 49.6 (± 2.0) 78.0 (± 2.0)
DGCNN 69.2 (± 3.0) 45.6 (± 3.4) 87.8 (± 2.5) 49.2 (± 1.2) 71.2 (± 1.9)
DiffPool 68.4 (± 3.3) 45.6 (± 3.4) 89.1 (± 1.6) 53.8 (± 1.4) 68.9 (± 2.0)
ECC 67.7 (± 2.8) 43.5 (± 3.1) OOR OOR OOR
GIN 71.2 (± 3.9) 48.5 (± 3.3) 89.9 (± 1.9) 56.1 (± 1.7) 75.6 (± 2.3)
GraphSAGE 68.8 (± 4.5) 47.6 (± 3.5) 84.3 (± 1.9) 50.0 (± 1.3) 73.9 (± 1.7)
1-step RWNN 70.8 (± 4.8) 47.8 (± 3.8) 90.4 (± 1.9) 51.7 (± 1.5) 71.7 (± 2.1)
2-step RWNN 70.6 (± 4.4) 48.8 (± 2.9) 90.3 (± 1.8) 51.7 (± 1.4) 71.3 (± 2.1)
3-step RWNN 70.7 (± 3.9) 47.8 (± 3.5) 89.7 (± 1.2) 53.4 (± 1.6) 71.9 (± 2.5)

Cite

Please cite our paper if you use this code:

@inproceedings{nikolentzos2020random,
  title={Random Walk Graph Neural Networks},
  author={Nikolentzos, Giannis and Vazirgiannis, Michalis},
  booktitle={Proceedings of the 34th Conference on Neural Information Processing Systems},
  pages={16211--16222},
  year={2020}
}
Owner
Giannis Nikolentzos
Giannis Nikolentzos
Deep Learning with PyTorch made easy 🚀 !

Deep Learning with PyTorch made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c

381 Dec 22, 2022
Epidemiology analysis package

zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is

Paul Zivich 111 Jan 08, 2023
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
Human Pose estimation with TensorFlow framework

Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and

Eldar Insafutdinov 1.1k Dec 29, 2022
PromptDet: Expand Your Detector Vocabulary with Uncurated Images

PromptDet: Expand Your Detector Vocabulary with Uncurated Images Paper Website Introduction The goal of this work is to establish a scalable pipeline

103 Dec 20, 2022
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
A python library for highly configurable transformers - easing model architecture search and experimentation.

A python library for highly configurable transformers - easing model architecture search and experimentation.

Anthony Fuller 51 Nov 20, 2022
An implementation of the BADGE batch active learning algorithm.

Batch Active learning by Diverse Gradient Embeddings (BADGE) An implementation of the BADGE batch active learning algorithm. Details are provided in o

125 Dec 24, 2022
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
PyTorch version implementation of DORN

DORN_PyTorch This is a PyTorch version implementation of DORN Reference H. Fu, M. Gong, C. Wang, K. Batmanghelich and D. Tao: Deep Ordinal Regression

Zilin.Zhang 3 Apr 27, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network

Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of

azad 2 Jul 09, 2022
Implementation of the SUMO (Slim U-Net trained on MODA) model

SUMO - Slim U-Net trained on MODA Implementation of the SUMO (Slim U-Net trained on MODA) model as described in: TODO: add reference to paper once ava

6 Nov 19, 2022
Elegy is a framework-agnostic Trainer interface for the Jax ecosystem.

Elegy Elegy is a framework-agnostic Trainer interface for the Jax ecosystem. Main Features Easy-to-use: Elegy provides a Keras-like high-level API tha

435 Dec 30, 2022