[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

Overview

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page]

@inproceedings{
  huang2021fapn,
  title={{FaPN}: Feature-aligned Pyramid Network for Dense Image Prediction},
  author={Shihua Huang and Zhichao Lu and Ran Cheng and Cheng He},
  booktitle={International Conference on Computer Vision (ICCV)},
  year={2021}
}

Overview

FaPN vs. FPN Before vs. After Alignment

This project provides the whole official implementation for our ICCV2021 paper "FaPN: Feature-aligned Pyramid Network for Dense Image Prediction" based on Detectron2, PanoticFCN, and MaskFormer. FaPN is a simple yet effective top-down pyramidal architecture to generate multi-scale features for dense image prediction. Comprised of a feature alignment module (FAM) and a feature selection module (FSM), FaPN addresses the issue of feature alignment in the original FPN, leading to substaintial improvements on various dense prediction tasks, such as object detection, semantic, instance, panoptic segmentation, etc.

Installation

This project is based on Detectron2, which can be constructed as follows.

Results

COCO Object Detection

Faster R-CNN + FaPN:

Name lr
sched
box
AP
box
APs
box
APm
box
APl
download
R50 1x 39.2 24.5 43.3 49.1 model |  log
R101 3x 42.8 27.0 46.2 54.9 model |  log

Cityscapes Semantic Segmentation

PointRend + FaPN:

Name lr
sched
mask
mIoU
mask
i_IoU
mask
IoU_sup
mask
iIoU_sup
download
R50 1x 80.0 61.3 90.6 78.5 model |  log
R101 1x 80.1 62.2 90.8 78.6 model |  log

ADE20K-150 Semantic Segmentation

MaskFormer + FaPN:

Name mIoU
Single-Scale
mIoU
Multi-Scale
download
Swin+Large+IN21K 55.2 56.7 model |  log

COCOStuff-10K Semantic Segmentation

MaskFormer + FaPN:

Name mIoU
Single-Scale
mIoU
Multi-Scale
download
R101 39.6 40.6 model |  log

COCO Instance Segmentation

Mask R-CNN + FaPN:

Name lr
sched
mask
AP
mask
APs
box
AP
box
APs
download
R50 1x 36.4 18.1 39.8 24.3 model |  log
R101 3x 39.4 20.9 43.8 27.4 model |  log

PointRend + FaPN:

Name lr
sched
mask
AP
mask
APs
box
AP
box
APs
download
R50 1x 37.6 18.6 39.4 24.2 model |  log

COCO Panoptic Segmentation

PanopticFPN + FaPN:

Name lr
sched
PQ mask
mIoU
St
PQ
box
AP
Th
PQ
download
R50 1x 41.1 43.4 32.5 38.7 46.9 model |  log
R101 3x 44.2 45.7 35.0 43.0 53.3 model |  log

PanopticFCN + FaPN:

Name lr
sched
PQ mask
mIoU
St
PQ
box
AP
Th
PQ
download
R50 1x 41.8 42.0 33.1 32.3 47.6 model |  log
R50-600 3x 43.5 43.5 35.1 34.5 49.0 model |  log
Owner
Shihua Huang
PhD candidate in PolyU.
Shihua Huang
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code

Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas

17 Dec 19, 2022
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
PromptDet: Expand Your Detector Vocabulary with Uncurated Images

PromptDet: Expand Your Detector Vocabulary with Uncurated Images Paper Website Introduction The goal of this work is to establish a scalable pipeline

103 Dec 20, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Sudoku solver - A sudoku solver with python

sudoku_solver A sudoku solver What is Sudoku? Sudoku (Japanese: 数独, romanized: s

Sikai Lu 0 May 22, 2022
Reproduction of Vision Transformer in Tensorflow2. Train from scratch and Finetune.

Vision Transformer(ViT) in Tensorflow2 Tensorflow2 implementation of the Vision Transformer(ViT). This repository is for An image is worth 16x16 words

sungjun lee 42 Dec 27, 2022
Code for Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Piggyback: https://arxiv.org/abs/1801.06519 Pretrained masks and backbones are available here: https://uofi.box.com/s/c5kixsvtrghu9yj51yb1oe853ltdfz4q

Arun Mallya 165 Nov 22, 2022
Pure python PEMDAS expression solver without using built-in eval function

pypemdas Pure python PEMDAS expression solver without using built-in eval function. Supports nested parenthesis. Supported operators: + - * / ^ Exampl

1 Dec 22, 2021
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T

Taehoon Kim 569 Dec 29, 2022
Contrastive Learning for Metagenomic Binning

CLMB A simple framework for CLMB - a novel deep Contrastive Learningfor Metagenomic Binning Created by Pengfei Zhang, senior of Department of Computer

1 Sep 14, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)

Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for

Jongin Lim 7 Sep 20, 2022
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022