An all-in-one application to visualize multiple different local path planning algorithms

Overview

Table of Contents

Local Planner Visualization Project (LPVP)

LPVP serves to provide a single application to visualize numerous different local planner algorithms used in Autonomous Vehicle path planning and mobile robotics. The application provides customizable parameters to better understand the inner workings of each algorithm and explore their strengths and drawbacks. It is written in Python and uses Pygame to render the visualizations.

App Preview

Features

  • Multiple Local Planner Algorithms
    • Probabilistic Roadmap
    • RRT
    • Potential Field
  • Multiple Graph Search Algorithms
    • Dijkstra's Shortest Path
    • A* Search
    • Greedy Best First Search
  • Graph Search visualization
  • Random obstacle generation with customizable obstacle count
  • Drag and drop obstacle generation
  • Drag and drop customizable start/end pose
  • Customizable Parameters for each planner algorithm
    • Probabilistic Roadmap
      • Sample Size
      • K-Neighbours
      • Graph Search algorithm
    • RRT
      • Path goal bias
    • Potential Field
      • Virtual Field toggle
  • Support for additional planner and search algorithms

Installation/Usage

The project is written in Python3, and uses pygame to handle the visualizations and pygame_gui for the gui. numpy is used for calculations for the potential field planner.

  1. Clone the repo
git clone https://github.com/abdurj/Local-Planner-Visualization-Project.git
  1. Install Dependencies
  pip3 install pygame pygame_gui numpy
  cd Local-Planner-Visualization-Project
  1. Run the program
python3 base.py

Local Planners

Probabilistic Roadmap (PRM)

The probabilistic roadmap planner is a sampling based planner that operates in 3 stages, and searches a constructed graph network to find the path between the start and end configuration. This approach is heavy on pre-processing, as it needs to generate the network, however after the preprocessing is done, it can quickly search the constructed network for any start and goal pose configuration without needing to restart. The PRM excels in solving motion planning problems in high dimensional C-Spaces, for example: a robot with many joints. However this project demonstrates a PRM acting in a 2D C-Space.

1. Sampling Stage

During the sampling stage the planner generates N samples from the free C-Space. In this project, the samples are generated by uniformly sampling the C-Space, and if the sample does not collide with any object, it is added as a Node in the roadmap. The PRM isn't limited to uniform sampling techniques, non-uniform sampling techniques can be used to better model the C-Space.

Non-uniform sampling methods are planned for a future release

App Preview

2. Creating the roadmap

In the next stage, the planner finds the K closest neighbours for each node. It then uses a simple local path planner to connect the node with it's neighbour nodes without trying to avoid any obstacles. This is done by simply creating a straight line between the nodes. If this line is collision free; an edge is created between the nodes.

App Preview

3. Searching the Roadmap

After connecting all nodes with its K closest neighbours, a resulting graph network will have been created. This network can be searched with a graph search algorithm. The currently supported graph search algorithms are:

  • Dijkstra's Shortest Path
  • A* Search
  • Greedy Best First Search

More search algorithms are planned for a future release.

App Preview

Rapidly-exploring Random Tree (RRT)

The rapidly-exploring random tree planner is another sampling based planner that explores the C-space by growing a tree rooted at the starting configuration. It then randomly samples the free c-space, and attempts to connect the random sample with the nearest node in the tree. The length of the connection is limited by a growth factor, or "step size". In path planning problems, a bias factor is introduced into the RRT. This bias factor introduces a probability that the random sample will be the goal pose. Increasing the bias factor affects how greedily the tree expands towards the goal. RRT

Potential Field

The potential field planner is adapted from the concept of a charged particle travelling through a charged magnetic field. The goal pose emits a strong attractive force, and the obstacles emit a repulsive force. We can emulate this behaviour by creating a artificial potential field that attracts the robot towards the goal. The goal pose emits a strong attractive field, and each obstacle emits a repulsive field. By following the sum of all fields at each position, we can construct a path towards the goal pose. PF Demo

Virtual Fields

A problem with the potential field planner is that it is easy for the planner to get stuck in local minima traps. Thus the Virtual Field method proposed by Ding Fu-guang et al. in this paper has been implemented to steer the path towards the open free space in the instance where the path is stuck. Virtual Field

Grid Based Planner

Grid based planners model the free C-Space as a grid. From there a graph search algorithm is used to search the graph for a path from the start and end pose.

A grid based planner is planned for a future release.

Current Issues

  • Updating starting configuration in PRM doesn't clear search visualization
  • Virtual Field pushes path into obstacles in certain scenarios

Contributing

Contributions are always welcome!

See contributing.md for ways to get started.

Roadmap

  • Add Grid Based Local Planner
  • Add variable growth factor to RRT planner
  • Add new local planners: RRT* / D* / Voronoi Roadmap
  • Add dynamic trajectory generation visualization as shown in this video

Authors

Project Setup / Algorithm Implementations

Styling / UI / Design

Acknowledgements

PRM

  • Becker, A. (2020, November 23). PRM: Probabilistic Roadmap Method in 3D and with 7-DOF robot arm. YouTube
  • Modern Robotics, Chapter 10.5: Sampling Methods for Motion Planning (Part 1 of 2). (2018, March 16). YouTube

RRT

  • Algobotics: Python RRT Path Planning playlist. Youtube
  • RRT, RRT* & Random Trees. (2018, November 21). YouTube

Potential Field

  • Ding Fu-guang, Jiao Peng, Bian Xin-qian and Wang Hong-jian, "AUV local path planning based on virtual potential field," IEEE International Conference Mechatronics and Automation, 2005, 2005, pp. 1711-1716 Vol. 4, doi: 10.1109/ICMA.2005.1626816. URL
  • Michael A. Goodrich, Potential Fields Tutorial URL
  • Safadi, H. (2007, April 18). Local Path Planning Using Virtual Potential Field. URL
  • Lehett, J, Pytential Fields Github Repo

License

This project is licensed under the terms of the MIT license.

You might also like...
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Simple streamlit app to demonstrate HERE Tour Planning
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Related resources for our EMNLP 2021 paper Plan-then-Generate: Controlled Data-to-Text Generation via Planning

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

 GNPy: Optical Route Planning and DWDM Network Optimization
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Releases(v1.0)
  • v1.0(Jul 26, 2021)

    Initial release of the LPVP project. Adds 3 Local Planner Algorithms: Probabilistic Roadmap, RRT, Potential Field Adds 3 Graph Search algorithms: Dijkstra's, A*, Greedy BFS

    Source code(tar.gz)
    Source code(zip)
Owner
Abdur Javaid
UW Software Engineering 2025
Abdur Javaid
render sprites into your desktop environment as shaped windows using GTK

spritegtk render static or animated sprites into your desktop environment as dynamic shaped windows using GTK requires pycairo and PYGobject: pip inst

hermit 20 Oct 27, 2022
An Unbiased Learning To Rank Algorithms (ULTRA) toolbox

Unbiased Learning to Rank Algorithms (ULTRA) This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiment

back 3 Nov 18, 2022
[CoRL 21'] TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo

TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo Lukas Koestler1*    Nan Yang1,2*,†    Niclas Zeller2,3    Daniel Cremers1

TUM Computer Vision Group 744 Jan 04, 2023
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)

PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa

Visual Inference Lab @TU Darmstadt 8 Dec 11, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Automated Side Channel Analysis of Media Software with Manifold Learning Official implementation of USENIX Security 2022 paper: Automated Side Channel

Yuanyuan Yuan 175 Jan 07, 2023
This repository contains small projects related to Neural Networks and Deep Learning in general.

ILearnDeepLearning.py Description People say that nothing develops and teaches you like getting your hands dirty. This repository contains small proje

Piotr Skalski 1.2k Dec 22, 2022
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap

<a href=[email protected]"> 66 Nov 23, 2022
Genshin-assets - 👧 Public documentation & static assets for Genshin Impact data.

genshin-assets This repo provides easy access to the Genshin Impact assets, primarily for use on static sites. Sources Genshin Optimizer - An Artifact

Zerite Development 5 Nov 22, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
3D Pose Estimation for Vehicles

3D Pose Estimation for Vehicles Introduction This work generates 4 key-points and 2 key-edges from vertices and edges of vehicles as ground truth. The

Jingyi Wang 1 Nov 01, 2021
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning

We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introdu

OATML 360 Dec 28, 2022
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

James G Silva 17 Nov 10, 2022
The implementation code for "DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction"

DAGAN This is the official implementation code for DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruct

TensorLayer Community 159 Nov 22, 2022
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks

Introduction This repository contains the modified caffe library and network architectures for our paper "Automated Melanoma Recognition in Dermoscopy

Lequan Yu 47 Nov 24, 2022