The implementation code for "DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction"

Overview

DAGAN

This is the official implementation code for DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction published in IEEE Transactions on Medical Imaging (2018).
Guang Yang*, Simiao Yu*, et al.
(* equal contributions)

If you use this code for your research, please cite our paper.

@article{yang2018_dagan,
	author = {Yang, Guang and Yu, Simiao and Dong, Hao and Slabaugh, Gregory G. and Dragotti, Pier Luigi and Ye, Xujiong and Liu, Fangde and Arridge, Simon R. and Keegan, Jennifer and Guo, Yike and Firmin, David N.},
	journal = {IEEE Trans. Med. Imaging},
	number = 6,
	pages = {1310--1321},
	title = {{DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction}},
	volume = 37,
	year = 2018
}

If you have any questions about this code, please feel free to contact Simiao Yu ([email protected]).

Prerequisites

The original code is in python 3.5 under the following dependencies:

  1. tensorflow (v1.1.0)
  2. tensorlayer (v1.7.2)
  3. easydict (v1.6)
  4. nibabel (v2.1.0)
  5. scikit-image (v0.12.3)

Code tested in Ubuntu 16.04 with Nvidia GPU + CUDA CuDNN (whose version is compatible to tensorflow v1.1.0).

How to use

  1. Prepare data

    1. Data used in this work are publicly available from the MICCAI 2013 grand challenge (link). We refer users to register with the grand challenge organisers to be able to download the data.
    2. Download training and test data respectively into data/MICCAI13_SegChallenge/Training_100 and data/MICCAI13_SegChallenge/Testing_100 (We randomly included 100 T1-weighted MRI datasets for training and 50 datasets for testing)
    3. run 'python data_loader.py'
    4. after running the code, training/validation/testing data should be saved to 'data/MICCAI13_SegChallenge/' in pickle format.
  2. Download pretrained VGG16 model

    1. Download 'vgg16_weights.npz' from this link
    2. Save 'vgg16_weights.npz' into 'trained_model/VGG16'
  3. Train model

    1. run 'CUDA_VISIBLE_DEVICES=0 python train.py --model MODEL --mask MASK --maskperc MASKPERC' where you should specify MODEL, MASK, MASKPERC respectively:
    • MODEL: choose from 'unet' or 'unet_refine'
    • MASK: choose from 'gaussian1d', 'gaussian2d', 'poisson2d'
    • MASKPERC: choose from '10', '20', '30', '40', '50' (percentage of mask)
  4. Test trained model

    1. run 'CUDA_VISIBLE_DEVICES=0 python test.py --model MODEL --mask MASK --maskperc MASKPERC' where you should specify MODEL, MASK, MASKPERC respectively (as above).

Results

Please refer to the paper for the detailed results.

Owner
TensorLayer Community
A neutral open community to promote AI technology.
TensorLayer Community
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Zhejun Zhang 118 Dec 28, 2022
Official Repository of NeurIPS2021 paper: PTR

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning Figure 1. Dataset Overview. Introduction A critical aspect of human vis

Yining Hong 32 Jun 02, 2022
Fluency ENhanced Sentence-bert Evaluation (FENSE), metric for audio caption evaluation. And Benchmark dataset AudioCaps-Eval, Clotho-Eval.

FENSE The metric, Fluency ENhanced Sentence-bert Evaluation (FENSE), for audio caption evaluation, proposed in the paper "Can Audio Captions Be Evalua

Zhiling Zhang 13 Dec 23, 2022
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

PointNav-VO The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation Project Page | Paper Table of Contents Setup

Xiaoming Zhao 41 Dec 15, 2022
👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

👐 OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
【ACMMM 2021】DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning

DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning (ACMMM 2021) Overview We release the code of the DSANet (Dynamic S

Wenhao Wu 46 Dec 27, 2022
Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

Riya Gupta 4 May 10, 2022
The final project of "Applying AI to 3D Medical Imaging Data" from "AI for Healthcare" nanodegree - Udacity.

Quantifying Hippocampus Volume for Alzheimer's Progression Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that result

Omar Laham 1 Jan 14, 2022
A fast Protein Chain / Ligand Extractor and organizer.

Are you tired of using visualization software, or full blown suites just to separate protein chains / ligands ? Are you tired of organizing the mess o

Amine Abdz 9 Nov 06, 2022
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
Detectorch - detectron for PyTorch

Detectorch - detectron for PyTorch (Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inf

Ignacio Rocco 558 Dec 23, 2022
Official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT This repository is the official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification. ArXiv If

International Business Machines 168 Dec 29, 2022
multimodal transformer

This repo holds the code to perform experiments with the multimodal autoregressive probabilistic model Transflower. Overview of the repo It is structu

Guillermo Valle 68 Dec 13, 2022
PolyGlot, a fuzzing framework for language processors

PolyGlot, a fuzzing framework for language processors Build We tested PolyGlot on Ubuntu 18.04. Get the source code: git clone https://github.com/s3te

Software Systems Security Team at Penn State University 79 Dec 27, 2022
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022