Nvidia Semantic Segmentation monorepo

Overview

Paper | YouTube | Cityscapes Score

Pytorch implementation of our paper Hierarchical Multi-Scale Attention for Semantic Segmentation.

Please refer to the sdcnet branch if you are looking for the code corresponding to Improving Semantic Segmentation via Video Prediction and Label Relaxation.

Installation

  • The code is tested with pytorch 1.3 and python 3.6
  • You can use ./Dockerfile to build an image.

Download Weights

  • Create a directory where you can keep large files. Ideally, not in this directory.
  > mkdir <large_asset_dir>
  • Update __C.ASSETS_PATH in config.py to point at that directory

    __C.ASSETS_PATH=<large_asset_dir>

  • Download pretrained weights from google drive and put into <large_asset_dir>/seg_weights

Download/Prepare Data

If using Cityscapes, download Cityscapes data, then update config.py to set the path:

__C.DATASET.CITYSCAPES_DIR=<path_to_cityscapes>

If using Cityscapes Autolabelled Images, download Cityscapes data, then update config.py to set the path:

__C.DATASET.CITYSCAPES_CUSTOMCOARSE=<path_to_cityscapes>

If using Mapillary, download Mapillary data, then update config.py to set the path:

__C.DATASET.MAPILLARY_DIR=<path_to_mapillary>

Running the code

The instructions below make use of a tool called runx, which we find useful to help automate experiment running and summarization. For more information about this tool, please see runx. In general, you can either use the runx-style commandlines shown below. Or you can call python train.py <args ...> directly if you like.

Run inference on Cityscapes

Dry run:

> python -m runx.runx scripts/eval_cityscapes.yml -i -n

This will just print out the command but not run. It's a good way to inspect the commandline.

Real run:

> python -m runx.runx scripts/eval_cityscapes.yml -i

The reported IOU should be 86.92. This evaluates with scales of 0.5, 1.0. and 2.0. You will find evaluation results in ./logs/eval_cityscapes/...

Run inference on Mapillary

> python -m runx.runx scripts/eval_mapillary.yml -i

The reported IOU should be 61.05. Note that this must be run on a 32GB node and the use of 'O3' mode for amp is critical in order to avoid GPU out of memory. Results in logs/eval_mapillary/...

Dump images for Cityscapes

> python -m runx.runx scripts/dump_cityscapes.yml -i

This will dump network output and composited images from running evaluation with the Cityscapes validation set.

Run inference and dump images on a folder of images

> python -m runx.runx scripts/dump_folder.yml -i

You should end up seeing images that look like the following:

alt text

Train a model

Train cityscapes, using HRNet + OCR + multi-scale attention with fine data and mapillary-pretrained model

> python -m runx.runx scripts/train_cityscapes.yml -i

The first time this command is run, a centroid file has to be built for the dataset. It'll take about 10 minutes. The centroid file is used during training to know how to sample from the dataset in a class-uniform way.

This training run should deliver a model that achieves 84.7 IOU.

Train SOTA default train-val split

> python -m runx.runx  scripts/train_cityscapes_sota.yml -i

Again, use -n to do a dry run and just print out the command. This should result in a model with 86.8 IOU. If you run out of memory, try to lower the crop size or turn off rmi_loss.

Owner
NVIDIA Corporation
NVIDIA Corporation
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Artifact • Reproduce Bugs • Quick Start • Installation • Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
Transparent Transformer Segmentation

Transparent Transformer Segmentation Introduction This repository contains the data and code for IJCAI 2021 paper Segmenting transparent object in the

谢恩泽 140 Jan 02, 2023
VLG-Net: Video-Language Graph Matching Networks for Video Grounding

VLG-Net: Video-Language Graph Matching Networks for Video Grounding Introduction Official repository for VLG-Net: Video-Language Graph Matching Networ

Mattia Soldan 25 Dec 04, 2022
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Dongkyu Lee 4 Sep 18, 2022
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

249 Jan 03, 2023
GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-

VITA 298 Dec 12, 2022
A modification of Daniel Russell's notebook merged with Katherine Crowson's hq-skip-net changes

Edits made to this repo by Katherine Crowson I have added several features to this repository for use in creating higher quality generative art (featu

Paul Fishwick 10 May 07, 2022
Metrics to evaluate quality and efficacy of synthetic datasets.

An Open Source Project from the Data to AI Lab, at MIT Metrics for Synthetic Data Generation Projects Website: https://sdv.dev Documentation: https://

The Synthetic Data Vault Project 129 Jan 03, 2023
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 269 Jan 02, 2023
A large dataset of 100k Google Satellite and matching Map images, resembling pix2pix's Google Maps dataset.

Larger Google Sat2Map dataset This dataset extends the aerial ⟷ Maps dataset used in pix2pix (Isola et al., CVPR17). The provide script download_sat2m

34 Dec 28, 2022
Semi-Autoregressive Transformer for Image Captioning

Semi-Autoregressive Transformer for Image Captioning Requirements Python 3.6 Pytorch 1.6 Prepare data Please use git clone --recurse-submodules to clo

YE Zhou 23 Dec 09, 2022
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

Xiaomi 4.7k Dec 29, 2022
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"

FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor

THUHCSI 74 Nov 28, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
An Inverse Kinematics library aiming performance and modularity

IKPy Demo Live demos of what IKPy can do (click on the image below to see the video): Also, a presentation of IKPy: Presentation. Features With IKPy,

Pierre Manceron 481 Jan 02, 2023
Everything about being a TA for ITP/AP course!

تی‌ای بودن! تی‌ای یا دستیار استاد از نقش‌های رایج بین دانشجویان مهندسی است، این ریپوزیتوری قرار است نکات مهم درمورد تی‌ای بودن و تی ای شدن را به ما نش

<a href=[email protected]"> 14 Sep 10, 2022
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
Automatic meme generation model using Tensorflow Keras.

Memefly You can find the project at MemeflyAI. Contributors Nick Buukhalter Harsh Desai Han Lee Project Overview Trello Board Product Canvas Automatic

BloomTech Labs 2 Jan 13, 2022