Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Overview

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Cold-start problem is still a very challenging problem in recommender systems. Fortunately, the interactions of the cold-start users in the auxiliary source domain can help cold-start recommendations in the target domain. How to transfer user's preferences from the source domain to the target domain, is the key issue in Cross-domain Recommendation (CDR) which is a promising solution to deal with the cold-start problem. Most existing methods model a common preference bridge to transfer preferences for all users. Intuitively, since preferences vary from user to user, the preference bridges of different users should be different. Along this line, we propose a novel framework named Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR). Specifically, a meta network fed with users' characteristic embeddings is learned to generate personalized bridge functions to achieve personalized transfer of preferences for each user. To learn the meta network stably, we employ a task-oriented optimization procedure. With the meta-generated personalized bridge function, the user's preference embedding in the source domain can be transformed into the target domain, and the transformed user preference embedding can be utilized as the initial embedding for the cold-start user in the target domain. Using large real-world datasets, we conduct extensive experiments to evaluate the effectiveness of PTUPCDR on both cold-start and warm-start stages.

Requirements

  • Python 3.6
  • Pytorch > 1.0
  • tensorflow
  • Pandas
  • Numpy
  • Tqdm

File Structure

.
├── code
│   ├── config.json         # Configurations
│   ├── entry.py            # Entry function
│   ├── models.py           # Models based on MF, GMF or Youtube DNN
│   ├── preprocessing.py    # Parsing and Segmentation
│   ├── readme.md
│   └── run.py              # Training and Evaluating 
└── data
    ├── mid                 # Mid data
    │   ├── Books.csv
    │   ├── CDs_and_Vinyl.csv
    │   └── Movies_and_TV.csv
    ├── raw                 # Raw data
    │   ├── reviews_Books_5.json.gz
    │   ├── reviews_CDs_and_Vinyl_5.json.gz
    │   └── reviews_Movies_and_TV_5.json.gz
    └── ready               # Ready to use
        ├── _2_8
        ├── _5_5
        └── _8_2

Dataset

We utilized the Amazon Reviews 5-score dataset. To download the Amazon dataset, you can use the following link: Amazon Reviews or Google Drive. Download the three domains: Music, Movies, Books (5-scores), and then put the data in ./data/raw.

You can use the following command to preprocess the dataset. The two-phase data preprocessing includes parsing the raw data and segmenting the mid data. The final data will be under ./data/ready.

python entry.py --process_data_mid 1 --process_data_ready 1

Run

Parameter Configuration:

  • task: different tasks within 1, 2 or 3, default for 1
  • base_model: different base models within MF, GMF or DNN, default for MF
  • ratio: train/test ratio within [0.8, 0.2], [0.5, 0.5] or [0.2, 0.8], default for [0.8, 0.2]
  • epoch: pre-training and CDR mapping training epoches, default for 10
  • seed: random seed, default for 2020
  • gpu: the index of gpu you will use, default for 0
  • lr: learning_rate, default for 0.01
  • model_name: base model for embedding, default for MF

You can run this model through:

# Run directly with default parameters 
python entry.py

# Reset training epoch to `10`
python entry.py --epoch 20

# Reset several parameters
python entry.py --gpu 1 --lr 0.02

# Reset seed (we use seed in[900, 1000, 10, 2020, 500])
python entry.py --seed 900

If you wanna try different weight decay, meta net dimension, embedding dimmension or more tasks, you may change the settings in ./code/config.json. Note that this repository consists of our PTUPCDR and three baselines, TGTOnly, CMF, and EMCDR.

Reference

Zhu Y, Tang Z, Liu Y, et al. Personalized Transfer of User Preferences for Cross-domain Recommendation[C]. The 15th ACM International Conference on Web Search and Data Mining, 2022.

or in bibtex style:

@inproceedings{zhu2022ptupcdr,
  title={Personalized Transfer of User Preferences for Cross-domain Recommendation},
  author={Zhu, Yongchun and Tang, Zhenwei and Liu, Yudan and Zhuang, Fuzhen, and Xie, Ruobing and Zhang, Xu and Lin, Leyu and He, Qing},
  inproceedings={The 15th ACM International Conference on Web Search and Data Mining},
  year={2022}
}
Owner
Yongchun Zhu
ICT Yongchun Zhu
Yongchun Zhu
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
Camview - A CLI-tool used to stream CCTV online footage based on URL params

CamView A CLI-tool used to stream CCTV online footage based on URL params Get St

Finn Lancaster 54 Dec 09, 2022
A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Panoptic Mapping This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based

ETHZ ASL 194 Dec 20, 2022
Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or columns of a 2d feature map, as a standalone package for Pytorch

Triangle Multiplicative Module - Pytorch Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or c

Phil Wang 22 Oct 28, 2022
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Saiency Map-aided GAN for RAW2RGB Mapping The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping. 1 Implementations B

Yuzhi ZHAO 20 Oct 24, 2022
Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data

We proposed a new approach to detect anomalies of mobile robot data. We investigate each data seperately with two clustering method hierarchical and k-means. There are two sub-method that we used for

Zekeriyya Demirci 1 Jan 09, 2022
Rlmm blender toolkit - A set of tools to streamline level generation in UDK straight from Blender

rlmm_blender_toolkit A set of tools to streamline level generation in UDK straig

Rocket League Mapmaking 0 Jan 15, 2022
Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

33 Nov 30, 2022
This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

Maitri Shah 1 Jan 06, 2022
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr

25 May 29, 2022
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
The Balloon Learning Environment - flying stratospheric balloons with deep reinforcement learning.

Balloon Learning Environment Docs The Balloon Learning Environment (BLE) is a simulator for stratospheric balloons. It is designed as a benchmark envi

Google 87 Dec 25, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
Privacy-Preserving Machine Learning (PPML) Tutorial Presented at PyConDE 2022

PPML: Machine Learning on Data you cannot see Repository for the tutorial on Privacy-Preserving Machine Learning (PPML) presented at PyConDE 2022 Abst

Valerio Maggio 10 Aug 16, 2022
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023