HDMapNet: A Local Semantic Map Learning and Evaluation Framework

Related tags

Deep LearningHDMapNet
Overview

HDMapNet_devkit

Devkit for HDMapNet.

HDMapNet: A Local Semantic Map Learning and Evaluation Framework

Qi Li, Yue Wang, Yilun Wang, Hang Zhao

[Paper] [Project Page] [5-min video]

Abstract: Estimating local semantics from sensory inputs is a central component for high-definition map constructions in autonomous driving. However, traditional pipelines require a vast amount of human efforts and resources in annotating and maintaining the semantics in the map, which limits its scalability. In this paper, we introduce the problem of local semantic map learning, which dynamically constructs the vectorized semantics based on onboard sensor observations. Meanwhile, we introduce a local semantic map learning method, dubbed HDMapNet. HDMapNet encodes image features from surrounding cameras and/or point clouds from LiDAR, and predicts vectorized map elements in the bird's-eye view. We benchmark HDMapNet on nuScenes dataset and show that in all settings, it performs better than baseline methods. Of note, our fusion-based HDMapNet outperforms existing methods by more than 50% in all metrics. In addition, we develop semantic-level and instance-level metrics to evaluate the map learning performance. Finally, we showcase our method is capable of predicting a locally consistent map. By introducing the method and metrics, we invite the community to study this novel map learning problem. Code and evaluation kit will be released to facilitate future development.

Questions/Requests: Please file an issue or email me at [email protected].

Preparation

  1. Download nuScenes dataset and put it to dataset/ folder.

  2. Install dependencies by running

pip install -r requirement.txt

Vectorization

Run python vis_label.py for demo of vectorized labels. The visualizations are in dataset/nuScenes/samples/GT.

Evaluation

Run python evaluate.py --result_path [submission file] for evaluation. The script accepts vectorized or rasterized maps as input. For vectorized map, We firstly rasterize the vectors to map to do evaluation. For rasterized map, you should make sure the line width=1.

Below is the format for vectorized submission:

-- Whether this submission uses camera data as an input. "use_lidar": -- Whether this submission uses lidar data as an input. "use_radar": -- Whether this submission uses radar data as an input. "use_external": -- Whether this submission uses external data as an input. "vector": true -- Whether this submission uses vector format. }, "results": { sample_token : List[vectorized_line] -- Maps each sample_token to a list of vectorized lines. } } vectorized_line { "pts": List[ ] -- Ordered points to define the vectorized line. "pts_num": , -- Number of points in this line. "type": <0, 1, 2> -- Type of the line: 0: ped; 1: divider; 2: boundary "confidence_level": -- Confidence level for prediction (used by Average Precision) }">
vectorized_submission {
    "meta": {
        "use_camera":   
          
             -- Whether this submission uses camera data as an input.
        "use_lidar":    
           
              -- Whether this submission uses lidar data as an input.
        "use_radar":    
            
               -- Whether this submission uses radar data as an input.
        "use_external": 
             
                -- Whether this submission uses external data as an input.
        "vector":        true   -- Whether this submission uses vector format.
    },
    "results": {
        sample_token 
              
               : List[vectorized_line] -- Maps each sample_token to a list of vectorized lines. } } vectorized_line { "pts": List[
               
                ] -- Ordered points to define the vectorized line. "pts_num": 
                
                 , -- Number of points in this line. "type": <0, 1, 2> -- Type of the line: 0: ped; 1: divider; 2: boundary "confidence_level": 
                 
                   -- Confidence level for prediction (used by Average Precision) } 
                 
                
               
              
             
            
           
          

For rasterized submission, the format is:

-- Whether this submission uses camera data as an input. "use_lidar": -- Whether this submission uses lidar data as an input. "use_radar": -- Whether this submission uses radar data as an input. "use_external": -- Whether this submission uses external data as an input. "vector": false -- Whether this submission uses vector format. }, "results": { sample_token : { -- Maps each sample_token to a list of vectorized lines. "map": [ ], -- Raster map of prediction (C=0: ped; 1: divider 2: boundary). The value indicates the line idx (start from 1). "confidence_level": Array[float], -- confidence_level[i] stands for confidence level for i^th line (start from 1). } } }">
rasterized_submisson {
    "meta": {
        "use_camera":   
        
           -- Whether this submission uses camera data as an input.
        "use_lidar":    
         
            -- Whether this submission uses lidar data as an input.
        "use_radar":    
          
             -- Whether this submission uses radar data as an input.
        "use_external": 
           
              -- Whether this submission uses external data as an input.
        "vector":       false   -- Whether this submission uses vector format.
    },
    "results": {
        sample_token 
            
             : { -- Maps each sample_token to a list of vectorized lines. "map": [
             
              ], -- Raster map of prediction (C=0: ped; 1: divider 2: boundary). The value indicates the line idx (start from 1). "confidence_level": Array[float], -- confidence_level[i] stands for confidence level for i^th line (start from 1). } } } 
             
            
           
          
         
        

Run python export_to_json.py to get a demo of vectorized submission. Run python export_to_json.py --raster for rasterized submission.

Citation

If you found this useful in your research, please consider citing

@misc{li2021hdmapnet,
      title={HDMapNet: A Local Semantic Map Learning and Evaluation Framework}, 
      author={Qi Li and Yue Wang and Yilun Wang and Hang Zhao},
      year={2021},
      eprint={2107.06307},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Tsinghua MARS Lab
MARS Lab at IIIS, Tsinghua University
Tsinghua MARS Lab
JAX-based neural network library

Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i

DeepMind 2.3k Jan 04, 2023
Hyperbolic Procrustes Analysis Using Riemannian Geometry

Hyperbolic Procrustes Analysis Using Riemannian Geometry The code in this repository creates the figures presented in this article: Please notice that

Ronen Talmon's Lab 2 Jan 08, 2023
Implements Gradient Centralization and allows it to use as a Python package in TensorFlow

Gradient Centralization TensorFlow This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique

Rishit Dagli 101 Nov 01, 2022
DumpSMBShare - A script to dump files and folders remotely from a Windows SMB share

DumpSMBShare A script to dump files and folders remotely from a Windows SMB shar

Podalirius 178 Jan 06, 2023
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans

This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision

6 Nov 07, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

James G Silva 17 Nov 10, 2022
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels

CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat

Alejandro Montanez 0 Jan 21, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
MODNet: Trimap-Free Portrait Matting in Real Time

MODNet is a model for real-time portrait matting with only RGB image input.

Zhanghan Ke 2.8k Dec 30, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration. Introduction spinor-gpe is high-level,

2 Sep 20, 2022
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022
A 1.3B text-to-image generation model trained on 14 million image-text pairs

minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no

Kakao Brain 604 Dec 14, 2022
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

ming71 56 Nov 28, 2022
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
Automatic Attendance marker for LMS Practice School Division, BITS Pilani

LMS Attendance Marker Automatic script for lazy people to mark attendance on LMS for Practice School 1. Setup Add your LMS credentials and time slot t

Nihar Bansal 3 Jun 12, 2021