《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Overview

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation


Overview


This is the demo code for training a motion invariant encoding network. The following diagram provides an overview of the network structure.

For more information, please visit http://geometry.cs.ucl.ac.uk/projects/2019/garment_authoring/

network

Structure


The project's directory is shown as follows. The data set is in the data_set folder, including cloth mesh(generated by Maya Qualoth), garment template, character animation and skeletons. Some supporting files can be found in support. The shape feature descriptor and motion invariant encoding network are saved in nnet.

├─data_set
│  ├─anim
│  ├─case
│  ├─garment
│  ├─skeleton
│  └─Maya
├─nnet
│  ├─basis
│  └─mie
├─support
│  ├─eval_basis
│  ├─eval_mie
│  ├─info_basis
│  └─info_mie
└─scripts

In the scripts folder, there are several python scripts which implement the training process. We also provide a data set for testing, generated from a sequence of dancing animation and a skirt.

Data Set


The data set includes not only the meshes and garment template, but also some supporting information. You can check the animation in the Maya folder. The animation information is saved in the anim folder. In the case folder, there are many meshes generated by Qualoth in different simulation parameters. The garment template is in the garment folder.

network

Installation


  • Clone the repo:
git clone https://github.com/YuanBoot/Intrinsic_Garment_Space.git

Model Training


Shape Descriptor

After all preparing works done, you can start to train the network. In scripts folder, some scripts named basis_* are used for training shape descriptor.

Run them as follows:

01.basis_prepare.py (data preparing)

02.basis_train.py (training)

03.basis_eval.py (evaluation)

After running 01 and 02 scripts, there will be a *.net file in the nnet/basis folder. It is the shape feature descriptor.

The result of a specific frame after running 03.basis_eval.py script. The yellow skirt is our output and the blue one is the ground truth. If the loss of the descriptor is low enough, these two skirt are almost overlap.

f2

Motion Invariant Encoding

Then, you can run mie_*.py scripts to get the motion invariant encoding network.

04.mie_prepare.py (data preparing)

05.mie_train.py (training)

06.mie_eval.py (evaluation)

If everything goes well, the exported mesh would be like the following figures. For the output from06.mie_eval.py is painted by red and the green one is the ground truth.

f3

Owner
YuanBo
YuanBo
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
Implementation of FSGNN

FSGNN Implementation of FSGNN. For more details, please refer to our paper Experiments were conducted with following setup: Pytorch: 1.6.0 Python: 3.8

19 Dec 05, 2022
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.

PAWS-TF 🐾 Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS)

Sayak Paul 43 Jan 08, 2023
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023
Simulation environments for the CrazyFlie quadrotor: Used for Reinforcement Learning and Sim-to-Real Transfer

Phoenix-Drone-Simulation An OpenAI Gym environment based on PyBullet for learning to control the CrazyFlie quadrotor: Can be used for Reinforcement Le

Sven Gronauer 8 Dec 07, 2022
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations"

Few-shot-NLEs These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations". You can find the smal

Yordan Yordanov 0 Oct 21, 2022
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance

Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data

58 Oct 26, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).

GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv

Big Data and Multi-modal Computing Group, CRIPAC 186 Dec 27, 2022
Python-based Informatics Kit for Analysing Chemical Units

INSTALLATION Python-based Informatics Kit for the Analysis of Chemical Units Step 1: Make a conda environment: conda create -n pikachu python=3.9 cond

47 Dec 23, 2022
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022