pytorch implementation of dftd2 & dftd3

Overview

torch-dftd

pytorch implementation of dftd2 [1] & dftd3 [2, 3]

Install

# Install from pypi
pip install torch-dftd

# Install from source (for developers)
git clone https://github.com/pfnet-research/torch-dftd
pip install -e .

Quick start

from ase.build import molecule
from torch_dftd.torch_dftd3_calculator import TorchDFTD3Calculator

atoms = molecule("CH3CH2OCH3")
# device="cuda:0" for fast GPU computation.
calc = TorchDFTD3Calculator(atoms=atoms, device="cpu", damping="bj")

energy = atoms.get_potential_energy()
forces = atoms.get_forces()

print(f"energy {energy} eV")
print(f"forces {forces}")

Dependency

The library is tested under following environment.

  • python: 3.6
  • CUDA: 10.2
torch==1.5.1
ase==3.21.1
# Below is only for 3-body term
cupy-cuda102==8.6.0
pytorch-pfn-extras==0.3.2

Development tips

Formatting & Linting

pysen is used to format the python code of this repository.
You can simply run below to get your code formatted :)

# Format the code
$ pysen run format
# Check the code format
$ pysen run lint

CUDA Kernel function implementation with cupy

cupy supports users to implement CUDA kernels within python code, and it can be easily linked with pytorch tensor calculations.
Element wise kernel is implemented and used in some pytorch functions to accelerate speed with GPU.

See document for details about user defined kernel.

Citation

Please always cite original paper of DFT-D2 [1] or DFT-D3 [2, 3], if you used this software for your publication.

DFT-D2:
[1] S. Grimme, J. Comput. Chem, 27 (2006), 1787-1799. DOI: 10.1002/jcc.20495

DFT-D3:
[2] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys, 132 (2010), 154104. DOI: 10.1063/1.3382344

If BJ-damping is used in DFT-D3:
[3] S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem, 32 (2011), 1456-1465. DOI: 10.1002/jcc.21759

Comments
  • [WIP] Cell-related gradient modifications

    [WIP] Cell-related gradient modifications

    I found that the current implementation has several performance issues regarding gradient wrt. cell. This PR modifies that. Since the changes are relatively much, I will put some comments.

    Change summary:

    • Use shift for gradient instead of cell.
    • shift is now length scale instead cell unit.
    • Calculate Voigt notation style stress directly

    Also, this PR contains bugfix related to sked cell.

    bug enhancement 
    opened by So-Takamoto 1
  • Raise Error with single atom inputs.

    Raise Error with single atom inputs.

    When the length of atoms is 1, the routine raises error.

    from ase.build import molecule
    from ase.calculators.dftd3 import DFTD3
    from torch_dftd.torch_dftd3_calculator import TorchDFTD3Calculator
    
    if __name__ == "__main__":
        atoms = molecule("H")
        # device="cuda:0" for fast GPU computation.
        calc = TorchDFTD3Calculator(atoms=atoms, device="cpu", damping="bj")
    
        energy = atoms.get_potential_energy()
        forces = atoms.get_forces()
    
        print(f"energy {energy} eV")
        print(f"forces {forces}")
    
    
    Traceback (most recent call last):
      File "quick.py", line 12, in <module>
        energy = atoms.get_potential_energy()
      File "/home/ahayashi/envs/dftd/lib/python3.8/site-packages/ase/atoms.py", line 731, in get_potential_energy
        energy = self._calc.get_potential_energy(self)
      File "/home/ahayashi/envs/dftd/lib/python3.8/site-packages/ase/calculators/calculator.py", line 709, in get_potential_energy
        energy = self.get_property('energy', atoms)
      File "/home/ahayashi/torch-dftd/torch_dftd/torch_dftd3_calculator.py", line 141, in get_property
        dftd3_result = Calculator.get_property(self, name, atoms, allow_calculation)
      File "/home/ahayashi/envs/dftd/lib/python3.8/site-packages/ase/calculators/calculator.py", line 737, in get_property
        self.calculate(atoms, [name], system_changes)
      File "/home/ahayashi/torch-dftd/torch_dftd/torch_dftd3_calculator.py", line 119, in calculate
        results = self.dftd_module.calc_energy(**input_dicts, damping=self.damping)[0]
      File "/home/ahayashi/torch-dftd/torch_dftd/nn/base_dftd_module.py", line 75, in calc_energy
        E_disp = self.calc_energy_batch(
      File "/home/ahayashi/torch-dftd/torch_dftd/nn/dftd3_module.py", line 86, in calc_energy_batch
        E_disp = d3_autoev * edisp(
      File "/home/ahayashi/torch-dftd/torch_dftd/functions/dftd3.py", line 189, in edisp
        c6 = _getc6(Zi, Zj, nci, ncj, c6ab=c6ab, k3=k3)  # c6 coefficients
      File "/home/ahayashi/torch-dftd/torch_dftd/functions/dftd3.py", line 97, in _getc6
        k3_rnc = torch.where(cn0 > 0.0, k3 * r, -1.0e20 * torch.ones_like(r)).view(n_edges, -1)
    RuntimeError: cannot reshape tensor of 0 elements into shape [0, -1] because the unspecified dimension size -1 can be any value and is ambiguous
    
    opened by AkihideHayashi 1
  • use shift for gradient calculation instead of cell

    use shift for gradient calculation instead of cell

    I found that the current implementation has several performance issues regarding gradient wrt. cell. This PR modifies it. Since the changes are relatively much, I will put some comments.

    Change summary:

    • Use shift for gradient instead of cell.
    • shift is now length scale instead cell unit.
    • Calculate Voigt notation style stress directly

    Also, this PR contains bugfix related to sked cell.

    bug enhancement 
    opened by So-Takamoto 0
  • Bugfix: batch calculation with abc=True

    Bugfix: batch calculation with abc=True

    I found that test function test_calc_energy_force_stress_device_batch_abc unintentionally ignores abc argument.

    This PR modified related implementation to work it.

    In addition, corner case correspondence when the total number of atom is zero is also added. (n_graphs cannot be calculated from batch_edge when len(batch_edge) == 0.)

    bug 
    opened by So-Takamoto 0
  • Fixed a bug for inputs with 0 adjacencies.

    Fixed a bug for inputs with 0 adjacencies.

    The _gettc6 routine now works correctly even when the number of adjacencies is 0. Instead of calling calc_neighbor_by_pymatgen when the number of atoms is 0 and the periodic boundary condition, it now return edge_index, S for adjacency 0. In my environment, using the result of torch.sum for the size of torch.zeros caused an error, so I changed it to cast the result of sum to int.

    bug 
    opened by AkihideHayashi 0
  •  Bug in test for stress

    Bug in test for stress

    In test_torch_dftd3_calculator.py/_assert_energy_force_stress_equal, there is a code below.

        if np.all(atoms.pbc == np.array([True, True, True])):
            s1 = atoms.get_stress()
            s2 = atoms.get_stress()
            assert np.allclose(s1, s2, atol=1e-5, rtol=1e-5)
    

    This code cannot compare the results of stresses of calc1 and calc2. Both s1 and s2 are the stress of calc2.

    opened by AkihideHayashi 0
Releases(v0.3.0)
  • v0.3.0(Apr 25, 2022)

    This is the release note of v0.3.0.

    Highlights

    • use shift for gradient calculation instead of cell #13 (Thank you @So-Takamoto )
      • It includes 1. speed up of stress calculation for batch atoms, and 2. bug fix for stress calculation when cell is skewed.
    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Sep 4, 2021)

    This is the release note of v0.2.0.

    Highlights

    • Add PFP citation in README.md #2
    • Use pymatgen for pbc neighbor search speed up #3

    Bug fixes

    • Fixed a bug for inputs with 0 adjacencies. #6 (Thank you @AkihideHayashi )
    • Remove RuntimeError on no-cupy environment #8 (Thank you @So-Takamoto )
    • Bugfix: batch calculation with abc=True #9 (Thank you @So-Takamoto )

    Others

    • move pysen to develop dependency #10 (Thank you @So-Takamoto )
    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(May 10, 2021)

Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Real-time stock predictions with deep learning and news scraping This repository contains a partial implementation of my bachelor's thesis "Real-time

David Álvarez de la Torre 0 Feb 09, 2022
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks arXiv preprint: https://arxiv.org/abs/2201.02143. Architec

19 Nov 30, 2022
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023
SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts

[arXiv] The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, wh

ZOZO, Inc. 138 Nov 24, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
Title: Heart-Failure-Classification

This Notebook is based off an open source dataset available on where I have created models to classify patients who can potentially witness heart failure on the basis of various parameters. The best

Akarsh Singh 2 Sep 13, 2022
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

SPatchGAN: Official TensorFlow Implementation Paper "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation"

39 Dec 30, 2022
A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

Yutian Liu 2 Jan 29, 2022
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Facebook Research 1.5k Dec 31, 2022
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS.

PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS. With Live, you can build a working mobile app ML demo in minutes.

559 Jan 01, 2023
QuALITY: Question Answering with Long Input Texts, Yes!

QuALITY: Question Answering with Long Input Texts, Yes! Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, An

ML² AT CILVR 61 Jan 02, 2023
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
Pun Detection and Location

Pun Detection and Location “The Boating Store Had Its Best Sail Ever”: Pronunciation-attentive Contextualized Pun Recognition Yichao Zhou, Jyun-yu Jia

lawson 3 May 13, 2022
Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline

vqvae_dwt_distiller.pytorch Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline. It allows to generate 512x512 ima

Sergei Belousov 25 Jul 19, 2022
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

Jinjiarui 69 Nov 24, 2022