Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

Related tags

Deep LearningSinIR
Overview

SinIR (Official Implementation)

Requirements

To install requirements:

pip install -r requirements.txt

We used Python 3.7.4 and f-strings which are introduced in python 3.6+

Training

To train a model, write a proper yaml config file in 'config_train' folder (sample yaml files provided in the config_train folder), and run this command:

python train.py <gpu_num> -y <yaml_file_in_'config_train'_folder>

For example, if you want to train a model with config_train/photo.yaml on gpu 0, run:

python train.py 0 -y photo

This will output a trained model, training logs, training output images and so on, to a subdirectory of 'outs' folder with proper naming and numbering which are used for inference.

Note that even though we provide one yaml file for each task, they can be used interchangeably, except few tasks.

You can copy and modify them depending on your purpose. Detailed explanation about configuration is written in the sample yaml files. Please read through it carefully if you need.

Inference

To carry out inference (i.e., image manipulation), you can specify inference yaml files in training yaml files. Please see provided sample training yaml files.

Or alternatively you can run this command:

python infer.py <output_dirnum> <gpu_num> -y <yaml_file_in_config_folder>

For example, if you want to carry out inference with a trained model numbered 002, with config_infer/photo_infer.yaml on gpu 0, run:

python infer.py 2 0 -y photo_infer

Then it will automatically find an output folder numbered 002 and conduct image manipulation, saving related results in the subdirectory.

Note that duplicated numbering (which can be avoided with a normal usage) will incur error. In this case, please keep only one output folder.

We also provide sample yaml files for inference which are paired with yaml files for training. Feel free to copy and modify depending on your purpose.

Acknowledgement

This repository includes images from:

  1. https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/ (BSD dataset)
  2. https://github.com/luanfujun/deep-painterly-harmonization/ (https://arxiv.org/abs/1804.03189)
  3. https://github.com/luanfujun/deep-photo-styletransfer (https://arxiv.org/abs/1703.07511)
  4. The Web (free images)

This repository includes codes snippets from:

  1. SSIM: https://github.com/VainF/pytorch-msssim
  2. Anti-aliasing + Bicubic resampling: https://github.com/thstkdgus35/bicubic_pytorch
  3. dilated mask: https://github.com/tamarott/SinGAN
A Domain-Agnostic Benchmark for Self-Supervised Learning

DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv

Alex Tamkin 81 Dec 09, 2022
Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you

Samaneh Azadi 422 Dec 04, 2022
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

74 Dec 15, 2022
Notebooks, slides and dataset of the CorrelAid Machine Learning Winter School

CorrelAid Machine Learning Winter School Welcome to the CorrelAid ML Winter School! Task The problem we want to solve is to classify trees in Roosevel

CorrelAid 12 Nov 23, 2022
22 Oct 14, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
Implementations of LSTM: A Search Space Odyssey variants and their training results on the PTB dataset.

An LSTM Odyssey Code for training variants of "LSTM: A Search Space Odyssey" on Fomoro. Check out the blog post. Training Install TensorFlow. Clone th

Fomoro AI 95 Apr 13, 2022
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 3 Apr 18, 2022
Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden

Sifei Liu 167 Dec 14, 2022
Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"

SharinGAN Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation" The official project we

Koutilya PNVR 23 Oct 19, 2022
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 07, 2022
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context Code in both PyTorch and TensorFlow

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Jan 06, 2023
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Intelligent Vision for Robotics in Complex Environment 10 Nov 07, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
Visyerres sgdf woob - Modules Woob pour l'intranet et autres sites Scouts et Guides de France

Vis'Yerres SGDF - Modules Woob Vous avez le sentiment que l'intranet des Scouts

Thomas Touhey (pas un pseudonyme) 3 Dec 24, 2022