Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Overview

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022)

Paper: https://arxiv.org/abs/2203.04042 (Arxiv version)

This code includes the training and testing procedures of our network on our Mono-colored raw Paired (MCR) dataset and SID dataset's Sony part.

Abstract: Low-light image enhancement - a pervasive but challenging problem, plays a central role in enhancing the visibility of an image captured in a poor illumination environment. Due to the fact that not all photons can pass the Bayer-Filter on the sensor of the color camera, in this work, we first present a De-Bayer-Filter simulator based on deep neural networks to generate a monochrome raw image from the colored raw image. Next, a fully convolutional network is proposed to achieve the low-light image enhancement by fusing colored raw data with synthesized monochrome raw data. Channel-wise attention is also introduced to the fusion process to establish a complementary interaction between features from colored and monochrome raw images. To train the convolutional networks, we propose a dataset with monochrome and color raw pairs named Mono-Colored Raw paired dataset (MCR) collected by using a monochrome camera without Bayer-Filter and a color camera with Bayer-Filter. The proposed pipeline take advantages of the fusion of the virtual monochrome and the color raw images and our extensive experiments indicate that significant improvement can be achieved by leveraging raw sensor data and data-driven learning.

pipeline

Video demos:

videos

Requirments

This is the Pytorch implementation of our work. The next requirments and some other frequently-used Library will be needed.

  1. Python >= 3.7
  2. Pytorch >= 1.7.1
  3. scikit-image 0.18.1
  4. imageio 2.9.0
  5. rawpy 0.17.0

Dataset

dataset

We propose the MCR [Google Drive, Baidu Netdisk (Extraction code: 22cv)], a dataset of colored raw and monochrome raw image pairs, captured with the same exposure setting. Each image has a resolution of 1280×1024.

The zip file contain 3 parts:

  • Mono_Colored_RAW_Paired_DATASET
    • RGB_GT (498 images)
    • Mono_GT (498 images)
    • Color_RAW_Input (498 × 8 images)

Totally 498 different scenes, each scene has 1 corresponding RGB and Monochrome ground truth and 8 different exposure color Raw inputs.

We assemble the color camera and the monochrome camera up and down, setting the same exposure times and gain in the same scene.

And we choose the monochrome GT and RGB GT under the longest exposure time.

The file name contains the image information. Take the image name:"C00001_48mp_0x8_0x1fff.tif" as an example.

"C" means it is color raw image;

"00001" is the image number;

"48mp" is the master clock frequency 48 MHz;

"0x8" is the hex number of global gain;

"0x1fff" indicate the shutter width of the camera which can calculate the exposure time.

For visual convenience, we convert '.raw' files to '.tif' files which have the same 'RGGB' Bayer-filter pattern as the raw files.

The relationship between shutter width and the exposure time is shown in the table below.

teaser

The first 2 rows represent the exposure time settings in the indoor scenes which image number is between 1 and 499, the last 2 rows represent outdoor scenes' exposure time settings.

Alignment

We propose our alignment code for color and monochrome images taken by 2 cameras under the same scene.

Alignment/raw folder contain samples of color and monochrome raw images in one scene.

Firstly,in convert_RAW.py, we reshape the flatten '.raw' files into '1280×1024' and save as '.tif' files, and then we use the 'exiftool.exe' to add the head info 'pbpx_exft_args.txt' and save the images as '.dng' and '.jpg' files.

Secondly, in alignment.py, we choose two '.jpg' images from color and monochrome, and use opencv to calculate the homograph to do the alignment for monochrome images.

Training & Testing

For fully loading our dataset, 36G RAM are needed.

The 'random_path_list' contain the split train&test path lists in our dataset.

We split 3984 pairs of our dataset into train set: 3600 pairs and test set: 384 pairs

We train and test our MCR dataset with train.py and test.py, and we also train our network on SID dataset's Sony part with train_on_SID.py and test_on_SID.py.

The pre-trained models on both datasets can be found at MCR_pretrained_model and SID_pretrained_model

Citation

If you find this project useful in your research, please consider citing:

@inproceedings{Dong2022Abandoning,
	title={Abandoning the Bayer-Filter to See in the Dark},
	author={Dong, Xingbo and Xu, Wanyan and Miao, Zhihui and Ma, Lan and Zhang, Chao and Yang, Jiewen and Jin, Zhe and Teoh, Andrew Beng Jin and Shen, Jiajun},
	booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
	year={2022}
}

License

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
Learning the Beauty in Songs: Neural Singing Voice Beautifier; ACL 2022 (Main conference); Official code

Learning the Beauty in Songs: Neural Singing Voice Beautifier Jinglin Liu, Chengxi Li, Yi Ren, Zhiying Zhu, Zhou Zhao Zhejiang University ACL 2022 Mai

Jinglin Liu 257 Dec 30, 2022
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Chaitanya Devaguptapu 4 Nov 10, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
Technical Analysis Indicators - Pandas TA is an easy to use Python 3 Pandas Extension with 130+ Indicators

Pandas TA - A Technical Analysis Library in Python 3 Pandas Technical Analysis (Pandas TA) is an easy to use library that leverages the Pandas package

Kevin Johnson 3.2k Jan 09, 2023
SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

SOLO: Segmenting Objects by Locations This project hosts the code for implementing the SOLO algorithms for instance segmentation. SOLO: Segmenting Obj

Xinlong Wang 1.5k Dec 31, 2022
Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

trRosetta - Pytorch (wip) Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

Phil Wang 67 Dec 17, 2022
CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching(CVPR2021)

CFNet(CVPR 2021) This is the implementation of the paper CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching, CVPR 2021, Zhelun Shen, Yuch

106 Dec 28, 2022
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022
Code & Data for the Paper "Time Masking for Temporal Language Models", WSDM 2022

Time Masking for Temporal Language Models This repository provides a reference implementation of the paper: Time Masking for Temporal Language Models

Guy Rosin 12 Jan 06, 2023
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021
An expansion for RDKit to read all types of files in one line

RDMolReader An expansion for RDKit to read all types of files in one line How to use? Add this single .py file to your project and import MolFromFile(

Ali Khodabandehlou 1 Dec 18, 2021
Distance Encoding for GNN Design

Distance-encoding for GNN design This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper: Dista

172 Nov 08, 2022
Unsupervised Attributed Multiplex Network Embedding (AAAI 2020)

Unsupervised Attributed Multiplex Network Embedding (DMGI) Overview Nodes in a multiplex network are connected by multiple types of relations. However

Chanyoung Park 114 Dec 06, 2022
Autolfads-tf2 - A TensorFlow 2.0 implementation of Latent Factor Analysis via Dynamical Systems (LFADS) and AutoLFADS

autolfads-tf2 A TensorFlow 2.0 implementation of LFADS and AutoLFADS. Installati

Systems Neural Engineering Lab 11 Oct 29, 2022
Fast Soft Color Segmentation

Fast Soft Color Segmentation

3 Oct 29, 2022
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023