Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Overview

StochFuzz: A New Solution for Binary-only Fuzzing

test benchmark

loading-ag-167

StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries. It is facilitated by a novel incremental and stochastic rewriting technique that is particularly suitable for binary-only fuzzing. Any AFL-based fuzzer, which takes edge coverage (defined by AFL) as runtime feedback, can acquire benefits from StochFuzz to directly fuzz stripped binaries.

More data and the results of the experiments can be found here. Example cases of leveraging StochFuzz to improve advanced AFL-based fuzzers (AFL++ and Polyglot) can be found in system.md.

Clarifications

  • We adopt a new system design than the one from the paper. Details can be found at system.md.
  • In the paper, when we are talking about e9patch, we are actually talking about the binary-only fuzzing tool built upon e9patch, namely e9tool. Please refer to its website for more details.
  • StochFuzz provides sound rewriting for binaries without inlined data, and probabilistically sound rewriting for the rest.

Building StochFuzz

StochFuzz is built upon Keystone, Capstone, GLib, and libunwind.

These dependences can be built by build.sh. If you are trying to build StochFuzz in a clean container, make sure some standard tools like autoreconf and libtool are installed.

$ git clone https://github.com/ZhangZhuoSJTU/StochFuzz.git
$ cd StochFuzz
$ ./build.sh

StochFuzz itself can be built by GNU Make.

$ cd src
$ make release

We have tested StochFuzz on Ubuntu 18.04. If you have any issue when running StochFuzz on other systems, please kindly let us know.

How to Use

StochFuzz provides multiple rewriting options, which follows the AFL's style of passing arguments.

$ ./stoch-fuzz -h
stoch-fuzz 1.0.0 by <[email protected]>

./stoch-fuzz [ options ] -- target_binary [ ... ]

Mode settings:

  -S            - start a background daemon and wait for a fuzzer to attach (defualt mode)
  -R            - dry run target_binary with given arguments without an attached fuzzer
  -P            - patch target_binary without incremental rewriting
  -D            - probabilistic disassembly without rewriting
  -V            - show currently observed breakpoints

Rewriting settings:

  -g            - trace previous PC
  -c            - count the number of basic blocks with conflicting hash values
  -d            - disable instrumentation optimization
  -r            - assume the return addresses are only used by RET instructions
  -e            - install the fork server at the entrypoint instead of the main function
  -f            - forcedly assume there is data interleaving with code
  -i            - ignore the call-fallthrough edges to defense RET-misusing obfuscation

Other stuff:

  -h            - print this help
  -x execs      - set the number of executions after which a checking run will be triggered
                  set it as zero to disable checking runs (default: 200000)
  -t msec       - set the timeout for each daemon-triggering execution
                  set it as zero to ignore the timeout (default: 2000 ms)
  -l level      - set the log level, including INFO, WARN, ERROR, and FATAL (default: INFO)

Basic Usage

- It is worth first trying the advanced strategy (see below) because that is much more cost-effective.

To fuzz a stripped binary, namely example.out, we need to cd to the directory of the target binary. For example, if the full path of example.out is /root/example.out, we need to first cd /root/. Furthermore, it is dangerous to run two StochFuzz instances under the same directory. These restrictions are caused by some design faults and we will try to relax them in the future.

Assuming StochFuzz is located at /root/StochFuzz/src/stoch-fuzz, execute the following command to start rewriting the target binary.

$ cd /root/
$ /root/StochFuzz/src/stoch-fuzz -- example.out # do not use ./example.out here

After the initial rewriting, we will get a phantom file named example.out.phantom. This phantom file can be directly fuzzed by AFL or any AFL-based fuzzer. Note that the StochFuzz process would not stop during fuzzing, so please make sure the process is alive during fuzzing.

Here is a demo that shows how StochFuzz works.

asciicast

Advanced Usage

Compared with the compiler-based instrumentation (e.g., afl-clang-fast), StochFuzz has additional runtime overhead because it needs to emulate each CALL instruction to support stack unwinding.

Inspired by a recent work, we provide an advanced rewriting strategy where we do not emulate CALL instructions but wrap the _ULx86_64_step function from libunwind to support stack unwinding. This strategy works for most binaries but may fail in some cases like fuzzing statically linked binaries.

To enable such strategy, simply provide a -r option to StochFuzz.

$ cd /root/
$ /root/StochFuzz/src/stoch-fuzz -r -- example.out # do not use ./example.out here

Addtionally, before fuzzing, we need to prepare the AFL_PRELOAD environment variable for AFL.

$ export STOCHFUZZ_PRELOAD=$(/root/StochFuzz/scritps/stochfuzz_env.sh)
$ AFL_PRELOAD=$STOCHFUZZ_PRELOAD afl-fuzz -i seeds -o output -t 2000 -- example.out.phantom @@

Following demo shows how to apply this advanced strategy.

asciicast

Troubleshootings

Common issues can be referred to trouble.md. If it cannot help solve your problem, please kindly open a Github issue.

Besides, we provide some tips on using StochFuzz, which can be found at tips.md

Development

Currently, we have many todo items. We present them in todo.md.

We also present many pending decisions which we are hesitating to take, in todo.md. If you have any thought/suggestion, do not hesitate to let us know. It would be very appreciated if you can help us improve StochFuzz.

StochFuzz should be considered an alpha-quality software and it is likely to contain bugs.

I will try my best to maintain StochFuzz timely, but sometimes it may take me more time to respond. Thanks for your understanding in advance.

Cite

Zhang, Zhuo, et al. "STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting." 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021.

References

  • Duck, Gregory J., Xiang Gao, and Abhik Roychoudhury. "Binary rewriting without control flow recovery." Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. 2020.
  • Meng, Xiaozhu, and Weijie Liu. "Incremental CFG patching for binary rewriting." Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.
  • Aschermann, Cornelius, et al. "Ijon: Exploring deep state spaces via fuzzing." 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020.
  • Google. “Google/AFL.” GitHub, github.com/google/AFL.
Owner
Zhuo Zhang
Zhuo Zhang
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

AllenXiang 65 Dec 26, 2022
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th

Liyan 52 Jan 04, 2023
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
This is an unofficial PyTorch implementation of Meta Pseudo Labels

This is an unofficial PyTorch implementation of Meta Pseudo Labels. The official Tensorflow implementation is here.

Jungdae Kim 320 Jan 08, 2023
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
Website which uses Deep Learning to generate horror stories.

Creepypasta - Text Generator Website which uses Deep Learning to generate horror stories. View Demo · View Website Repo · Report Bug · Request Feature

Dhairya Sharma 5 Oct 14, 2022
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
Unofficial implementation (replicates paper results!) of MINER: Multiscale Implicit Neural Representations in pytorch-lightning

MINER_pl Unofficial implementation of MINER: Multiscale Implicit Neural Representations in pytorch-lightning. 📖 Ref readings Laplacian pyramid explan

AI葵 51 Nov 28, 2022
The repo of Feedback Networks, CVPR17

Feedback Networks http://feedbacknet.stanford.edu/ Paper: Feedback Networks, CVPR 2017. Amir R. Zamir*,Te-Lin Wu*, Lin Sun, William B. Shen, Bertram E

Stanford Vision and Learning Lab 87 Nov 19, 2022
Neural network for stock price prediction

neural_network_for_stock_price_prediction Neural networks for stock price predic

2 Feb 04, 2022
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

bigAIdream projects 10 Oct 10, 2022
EmoTag helps you train emotion detection model for Chinese audios

emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat

_zza 4 Sep 07, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022
JAX + dataclasses

jax_dataclasses jax_dataclasses provides a wrapper around dataclasses.dataclass for use in JAX, which enables automatic support for: Pytree registrati

Brent Yi 35 Dec 21, 2022
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022