Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Overview

StochFuzz: A New Solution for Binary-only Fuzzing

test benchmark

loading-ag-167

StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries. It is facilitated by a novel incremental and stochastic rewriting technique that is particularly suitable for binary-only fuzzing. Any AFL-based fuzzer, which takes edge coverage (defined by AFL) as runtime feedback, can acquire benefits from StochFuzz to directly fuzz stripped binaries.

More data and the results of the experiments can be found here. Example cases of leveraging StochFuzz to improve advanced AFL-based fuzzers (AFL++ and Polyglot) can be found in system.md.

Clarifications

  • We adopt a new system design than the one from the paper. Details can be found at system.md.
  • In the paper, when we are talking about e9patch, we are actually talking about the binary-only fuzzing tool built upon e9patch, namely e9tool. Please refer to its website for more details.
  • StochFuzz provides sound rewriting for binaries without inlined data, and probabilistically sound rewriting for the rest.

Building StochFuzz

StochFuzz is built upon Keystone, Capstone, GLib, and libunwind.

These dependences can be built by build.sh. If you are trying to build StochFuzz in a clean container, make sure some standard tools like autoreconf and libtool are installed.

$ git clone https://github.com/ZhangZhuoSJTU/StochFuzz.git
$ cd StochFuzz
$ ./build.sh

StochFuzz itself can be built by GNU Make.

$ cd src
$ make release

We have tested StochFuzz on Ubuntu 18.04. If you have any issue when running StochFuzz on other systems, please kindly let us know.

How to Use

StochFuzz provides multiple rewriting options, which follows the AFL's style of passing arguments.

$ ./stoch-fuzz -h
stoch-fuzz 1.0.0 by <[email protected]>

./stoch-fuzz [ options ] -- target_binary [ ... ]

Mode settings:

  -S            - start a background daemon and wait for a fuzzer to attach (defualt mode)
  -R            - dry run target_binary with given arguments without an attached fuzzer
  -P            - patch target_binary without incremental rewriting
  -D            - probabilistic disassembly without rewriting
  -V            - show currently observed breakpoints

Rewriting settings:

  -g            - trace previous PC
  -c            - count the number of basic blocks with conflicting hash values
  -d            - disable instrumentation optimization
  -r            - assume the return addresses are only used by RET instructions
  -e            - install the fork server at the entrypoint instead of the main function
  -f            - forcedly assume there is data interleaving with code
  -i            - ignore the call-fallthrough edges to defense RET-misusing obfuscation

Other stuff:

  -h            - print this help
  -x execs      - set the number of executions after which a checking run will be triggered
                  set it as zero to disable checking runs (default: 200000)
  -t msec       - set the timeout for each daemon-triggering execution
                  set it as zero to ignore the timeout (default: 2000 ms)
  -l level      - set the log level, including INFO, WARN, ERROR, and FATAL (default: INFO)

Basic Usage

- It is worth first trying the advanced strategy (see below) because that is much more cost-effective.

To fuzz a stripped binary, namely example.out, we need to cd to the directory of the target binary. For example, if the full path of example.out is /root/example.out, we need to first cd /root/. Furthermore, it is dangerous to run two StochFuzz instances under the same directory. These restrictions are caused by some design faults and we will try to relax them in the future.

Assuming StochFuzz is located at /root/StochFuzz/src/stoch-fuzz, execute the following command to start rewriting the target binary.

$ cd /root/
$ /root/StochFuzz/src/stoch-fuzz -- example.out # do not use ./example.out here

After the initial rewriting, we will get a phantom file named example.out.phantom. This phantom file can be directly fuzzed by AFL or any AFL-based fuzzer. Note that the StochFuzz process would not stop during fuzzing, so please make sure the process is alive during fuzzing.

Here is a demo that shows how StochFuzz works.

asciicast

Advanced Usage

Compared with the compiler-based instrumentation (e.g., afl-clang-fast), StochFuzz has additional runtime overhead because it needs to emulate each CALL instruction to support stack unwinding.

Inspired by a recent work, we provide an advanced rewriting strategy where we do not emulate CALL instructions but wrap the _ULx86_64_step function from libunwind to support stack unwinding. This strategy works for most binaries but may fail in some cases like fuzzing statically linked binaries.

To enable such strategy, simply provide a -r option to StochFuzz.

$ cd /root/
$ /root/StochFuzz/src/stoch-fuzz -r -- example.out # do not use ./example.out here

Addtionally, before fuzzing, we need to prepare the AFL_PRELOAD environment variable for AFL.

$ export STOCHFUZZ_PRELOAD=$(/root/StochFuzz/scritps/stochfuzz_env.sh)
$ AFL_PRELOAD=$STOCHFUZZ_PRELOAD afl-fuzz -i seeds -o output -t 2000 -- example.out.phantom @@

Following demo shows how to apply this advanced strategy.

asciicast

Troubleshootings

Common issues can be referred to trouble.md. If it cannot help solve your problem, please kindly open a Github issue.

Besides, we provide some tips on using StochFuzz, which can be found at tips.md

Development

Currently, we have many todo items. We present them in todo.md.

We also present many pending decisions which we are hesitating to take, in todo.md. If you have any thought/suggestion, do not hesitate to let us know. It would be very appreciated if you can help us improve StochFuzz.

StochFuzz should be considered an alpha-quality software and it is likely to contain bugs.

I will try my best to maintain StochFuzz timely, but sometimes it may take me more time to respond. Thanks for your understanding in advance.

Cite

Zhang, Zhuo, et al. "STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting." 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021.

References

  • Duck, Gregory J., Xiang Gao, and Abhik Roychoudhury. "Binary rewriting without control flow recovery." Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. 2020.
  • Meng, Xiaozhu, and Weijie Liu. "Incremental CFG patching for binary rewriting." Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.
  • Aschermann, Cornelius, et al. "Ijon: Exploring deep state spaces via fuzzing." 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020.
  • Google. “Google/AFL.” GitHub, github.com/google/AFL.
Owner
Zhuo Zhang
Zhuo Zhang
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023
PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th

Vrushank Changawala 2 Oct 06, 2021
Codebase for "Revisiting spatio-temporal layouts for compositional action recognition" (Oral at BMVC 2021).

Revisiting spatio-temporal layouts for compositional action recognition Codebase for "Revisiting spatio-temporal layouts for compositional action reco

Gorjan 20 Dec 15, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r

Jangwon Park 34 Jan 01, 2023
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

60 Dec 22, 2022
PyTorch Implement for Path Attention Graph Network

SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne

Yang Yiding 38 Dec 28, 2022
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
Robust Partial Matching for Person Search in the Wild

APNet for Person Search Introduction This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part

Yingji Zhong 36 Dec 18, 2022
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
Code for database and frontend of webpage for Neural Fields in Visual Computing and Beyond.

Neural Fields in Visual Computing—Complementary Webpage This is based on the amazing MiniConf project from Hendrik Strobelt and Sasha Rush—thank you!

Brown University Visual Computing Group 29 Nov 30, 2022
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
Implementation of the paper "Shapley Explanation Networks"

Shapley Explanation Networks Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimenta

68 Dec 27, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023
Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the ou

The AI Guy 1.1k Dec 29, 2022
Code for weakly supervised segmentation of a single class

SingleClassRL Implementation of weak single object segmentation from paper "Regularized Loss for Weakly Supervised Single Class Semantic Segmentation"

16 Nov 14, 2022
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023