MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Related tags

Deep LearningMoCoPnet
Overview

Deformable 3D Convolution for Video Super-Resolution

Pytorch implementation of local motion and contrast prior driven deep network (MoCoPnet). [PDF]

Overview


Requirements

  • Python 3
  • pytorch >= 1.6
  • numpy, PIL

Datasets

Training & test datasets

Download SAITD dataset.

SAITD dataset is a large-scale high-quality semi-synthetic dataset of infrared small target. We employ the 1st-50th sequences with target annotations as the test datasets and the remaining 300 sequences as the training datasets.

Download Hui and Anti-UAV.

Hui and Anti-UAV datasets are used as the test datasets to test the robustness of our MoCoPnet to real scenes. In Anti-UAV dataset, only the sequences with infrared small target (i.e., The target size is less than 0.12% of the image size) are selected as the test set (21 sequences in total). Note that, we only use the first 100 images of each sequence for test to balance computational/time cost and generalization performance.

For simplicity, you can also Download the test datasets in https://pan.baidu.com/s/1oobhklwIChvNJIBpTcdQRQ?pwd=1113 and put the folder in code/data.

Data format:

  1. The training dataset is in code/data/train/SAITD.
train
  └── SAITD
       └── 1
              ├── 0.png
              ├── 1.png
              ├── ...
       └── 2
              ├── 00001
              ├── 00002
              ├── ...		
       ...
  1. The test datasets are in code/data/test as below:
 test
  └── dataset_1
         └── scene_1
              ├── 0.png  
              ├── 1.png  
              ├── ...
              └── 100.png    
               
         ├── ...		  
         └── scene_M
  ├── ...    
  └── dataset_N      

Results

Quantitative Results of SR performance

Table 1. PSNR/SSIM achieved by different methods.

Table 2. SNR and CR results of different methods achieved on super-resolved LR images and super-resolved HR images.

Qualitative Results of SR performance

Figure 1. Visual results of different SR methods on LR images for 4x SR.

Figure 2. Visual results of different SR methods on LR images for 4x SR.

Quantitative Results of detection

Table 3. Quantitative results of Tophat, ILCM, IPI achieved on super-resolved LR images.

Table 4. Quantitative results of Tophat, ILCM, IPI achieved on super-resolved HR images.

Figure 3. ROC results of Tophat, ILCM and IPI achieved on super-resolved LR images.

Figure 4. ROC results of Tophat, ILCM and IPI achieved on super-resolved HR images.

Qualitative Results of detection

Figure 5. Qualitative results of super-resolved LR image and detection results.

Figure 6. Qualitative results of super-resolved HR image and detection results.

Citiation

@article{MoCoPnet,
  author = {Ying, Xinyi and Wang, Yingqian and Wang, Longguang and Sheng, Weidong and Liu, Li and Lin, Zaipin and Zhou, Shilin},
  title = {MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution},
  journal={arXiv preprint arXiv:2201.01014},
  year = {2020},
}

Contact

Please contact us at [email protected] for any question.

Owner
Xinyi Ying
Her current research interests focus on image & video super-resolution and small target detection.
Xinyi Ying
Simulation-based inference for the Galactic Center Excess

Simulation-based inference for the Galactic Center Excess Siddharth Mishra-Sharma and Kyle Cranmer Abstract The nature of the Fermi gamma-ray Galactic

Siddharth Mishra-Sharma 3 Jan 21, 2022
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

C⚙G - Imperial College London 179 Jan 02, 2023
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer"

Shuffle Transformer The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer" Introduction Very recently, window-

87 Nov 29, 2022
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

47 2 May 17, 2022
Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

C2-Matching (CVPR2021) This repository contains the implementation of the following paper: Robust Reference-based Super-Resolution via C2-Matching Yum

Yuming Jiang 151 Dec 26, 2022
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Beom 74 Dec 27, 2022
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Ketan Chawla 1 Apr 17, 2022
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022
A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking PoseRBPF Paper Self-supervision Paper Pose Estimation Video Robot Manipulati

NVIDIA Research Projects 107 Dec 25, 2022
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

40 Dec 30, 2022
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021