Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

Related tags

Deep LearningDeFlow
Overview

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

[Paper] CVPR 2021 Oral

Setup and Installation

# create and activate new conda environment
conda create --name DeFlow python=3.7.9
conda activate DeFlow

# install pytorch 1.6 (untested with different versions)
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch
# install required packages
pip install pyyaml imageio natsort opencv-python scikit-image tqdm jupyter psutil tensorboard

# clone the repository
git clone https://github.com/volflow/DeFlow.git
cd ./DeFlow/

Dataset Preparation

We provide bash scripts that download and prepare the AIM-RWSR, NTIRE-RWSR, and DPED-RWSR datasets. The script generates all the downsampled images required by DeFlow in advance for faster training.

Validation datasets

cd ./datasets
bash get-AIM-RWSR-val.sh 
bash get-NTIRE-RWSR-val.sh 

Training datasets

cd ./datasets
bash get-AIM-RWSR-train.sh 
bash get-NTIRE-RWSR-train.sh 

DPED dataset
For the DPED-RWSR dataset, we followed the approach of https://github.com/jixiaozhong/RealSR and used KernelGAN https://github.com/sefibk/KernelGAN to estimate and apply blur kernels to the downsampled high-quality images. DeFlow is then trained with these blurred images. More detailed instructions on this will be added here soon.

Trained Models

DeFlow Models
To download the trained DeFlow models run:

cd ./trained_models/
bash get-DeFlow-models.sh 

Pretrained RRDB models
To download the pretrained RRDB models used for training run:

cd ./trained_models/
bash get-RRDB-models.sh 

ESRGAN Models
The ESRGAN models trained with degradations generated by DeFlow will be made available for download here soon.

Validate Pretrained Models

  1. Download and prepare the corresponding validation datasets (see above)
  2. Download the pretrained DeFlow models (see above)
  3. Run the below codes to validate the model on the images of the validation set:
cd ./codes
CUDA_VISIBLE_DEVICES=-1 python validate.py -opt DeFlow-AIM-RWSR.yml -model_path ../trained_models/DeFlow_models/DeFlow-AIM-RWSR-100k.pth -crop_size 256 -n_max 5;
CUDA_VISIBLE_DEVICES=-1 python validate.py -opt DeFlow-NTIRE-RWSR.yml -model_path ../trained_models/DeFlow_models/DeFlow-NTIRE-RWSR-100k.pth -crop_size 256 -n_max 5;

If your GPU has enough memory or -crop_size is set small enough you can remove CUDA_VISIBLE_DEVICES=-1 from the above commands to run the validation on your GPU.

The resulting images are saved to a subfolder in ./results/ which again contains four subfolders:

  • /0_to_1/ contains images from domain X (clean) translated to domain Y (noisy). This adds the synthetic degradations
  • /1_to_0/ contains images from domain Y (noisy) translated to domain X (clean). This reverses the degradation model and shows some denoising performance
  • /0_gen/ and the /1_gen/ folders contain samples from the conditional distributions p_X(x|h(x)) and p_Y(x|h(x)), respectively

Generate Synthetic Dataset for Downstream Tasks

To apply the DeFlow degradation model to a folder of high-quality images use the translate.py script. For example to generate the degraded low-resolution images for the AIM-RWSR dataset that we used to train our ESRGAN model run:

## download dataset if not already done
# cd ./datasets
# bash get-AIM-RWSR-train.sh
# cd ..
cd ./codes
CUDA_VISIBLE_DEVICES=-1 python translate.py -opt DeFlow-AIM-RWSR.yml -model_path ../trained_models/DeFlow_models/DeFlow-AIM-RWSR-100k.pth -source_dir ../datasets/AIM-RWSR/train-clean-images/4x/ -out_dir ../datasets/AIM-RWSR/train-clean-images/4x_degraded/

Training the downstream ESRGAN models
We used the training pipeline from https://github.com/jixiaozhong/RealSR to train our ESRGAN models trained on the high-resolution /1x/ and low-resolution /4x_degraded/ data. The trained ESRGAN models and more details on how to reproduce them will be added here soon.

Training DeFlow

  1. Download and prepare the corresponding training datasets (see above)
  2. Download and prepare the corresponding validation datasets (see above)
  3. Download the pretrained RRDB models (see above)
  4. Run the provided train.py script with the corresponding configs
cd code
python train.py -opt ./confs/DeFlow-AIM-RWSR.yml
python train.py -opt ./confs/DeFlow-NTIRE-RWSR.yml

If you run out of GPU memory you can reduce the batch size or the patch size in the config files. To train without a GPU prefix the commands with CUDA_VISIBLE_DEVICES=-1.

Instructions for training DeFlow on the DPED dataset will be added here soon.

To train DeFlow on other datasets simply create your own config file and change the dataset paths accordingly. To pre-generate the downsampled images that are used as conditional features by DeFlow you can use the ./datasets/create_DeFlow_train_dataset.py script.

Citation

[Paper] CVPR 2021 Oral

@inproceedings{wolf2021deflow,
    author    = {Valentin Wolf and
                Andreas Lugmayr and
                Martin Danelljan and
                Luc Van Gool and
                Radu Timofte},
    title     = {DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows},
    booktitle = {{IEEE/CVF} Conference on Computer Vision and Pattern Recognition, {CVPR}},
    year      = {2021},
    url       = {https://arxiv.org/abs/2101.05796}
}
Owner
Valentin Wolf
CS Student at ETH Zurich
Valentin Wolf
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
DLWP: Deep Learning Weather Prediction

DLWP: Deep Learning Weather Prediction DLWP is a Python project containing data-

Kushal Shingote 3 Aug 14, 2022
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))

PTvsBT On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021) Citation Please cite a

Sunbow Liu 10 Nov 25, 2022
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline

Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.

Afropunk Technologist 1 Jan 24, 2022
Efficient training of deep recommenders on cloud.

HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and

Alibaba 111 Dec 23, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
The modify PyTorch version of Siam-trackers which are speed-up by TensorRT.

SiamTracker-with-TensorRT The modify PyTorch version of Siam-trackers which are speed-up by TensorRT or ONNX. [Updating...] Examples demonstrating how

9 Dec 13, 2022
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf] The official repository for TransReID: Transformer-based Object Re-Identificati

DamoCV 569 Dec 30, 2022
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
Draw like Bob Ross using the power of Neural Networks (With PyTorch)!

Draw like Bob Ross using the power of Neural Networks! (+ Pytorch) Learning Process Visualization Getting started Install dependecies Requires python3

Kendrick Tan 116 Mar 07, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022