Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

Related tags

Deep LearningDeFlow
Overview

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

[Paper] CVPR 2021 Oral

Setup and Installation

# create and activate new conda environment
conda create --name DeFlow python=3.7.9
conda activate DeFlow

# install pytorch 1.6 (untested with different versions)
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch
# install required packages
pip install pyyaml imageio natsort opencv-python scikit-image tqdm jupyter psutil tensorboard

# clone the repository
git clone https://github.com/volflow/DeFlow.git
cd ./DeFlow/

Dataset Preparation

We provide bash scripts that download and prepare the AIM-RWSR, NTIRE-RWSR, and DPED-RWSR datasets. The script generates all the downsampled images required by DeFlow in advance for faster training.

Validation datasets

cd ./datasets
bash get-AIM-RWSR-val.sh 
bash get-NTIRE-RWSR-val.sh 

Training datasets

cd ./datasets
bash get-AIM-RWSR-train.sh 
bash get-NTIRE-RWSR-train.sh 

DPED dataset
For the DPED-RWSR dataset, we followed the approach of https://github.com/jixiaozhong/RealSR and used KernelGAN https://github.com/sefibk/KernelGAN to estimate and apply blur kernels to the downsampled high-quality images. DeFlow is then trained with these blurred images. More detailed instructions on this will be added here soon.

Trained Models

DeFlow Models
To download the trained DeFlow models run:

cd ./trained_models/
bash get-DeFlow-models.sh 

Pretrained RRDB models
To download the pretrained RRDB models used for training run:

cd ./trained_models/
bash get-RRDB-models.sh 

ESRGAN Models
The ESRGAN models trained with degradations generated by DeFlow will be made available for download here soon.

Validate Pretrained Models

  1. Download and prepare the corresponding validation datasets (see above)
  2. Download the pretrained DeFlow models (see above)
  3. Run the below codes to validate the model on the images of the validation set:
cd ./codes
CUDA_VISIBLE_DEVICES=-1 python validate.py -opt DeFlow-AIM-RWSR.yml -model_path ../trained_models/DeFlow_models/DeFlow-AIM-RWSR-100k.pth -crop_size 256 -n_max 5;
CUDA_VISIBLE_DEVICES=-1 python validate.py -opt DeFlow-NTIRE-RWSR.yml -model_path ../trained_models/DeFlow_models/DeFlow-NTIRE-RWSR-100k.pth -crop_size 256 -n_max 5;

If your GPU has enough memory or -crop_size is set small enough you can remove CUDA_VISIBLE_DEVICES=-1 from the above commands to run the validation on your GPU.

The resulting images are saved to a subfolder in ./results/ which again contains four subfolders:

  • /0_to_1/ contains images from domain X (clean) translated to domain Y (noisy). This adds the synthetic degradations
  • /1_to_0/ contains images from domain Y (noisy) translated to domain X (clean). This reverses the degradation model and shows some denoising performance
  • /0_gen/ and the /1_gen/ folders contain samples from the conditional distributions p_X(x|h(x)) and p_Y(x|h(x)), respectively

Generate Synthetic Dataset for Downstream Tasks

To apply the DeFlow degradation model to a folder of high-quality images use the translate.py script. For example to generate the degraded low-resolution images for the AIM-RWSR dataset that we used to train our ESRGAN model run:

## download dataset if not already done
# cd ./datasets
# bash get-AIM-RWSR-train.sh
# cd ..
cd ./codes
CUDA_VISIBLE_DEVICES=-1 python translate.py -opt DeFlow-AIM-RWSR.yml -model_path ../trained_models/DeFlow_models/DeFlow-AIM-RWSR-100k.pth -source_dir ../datasets/AIM-RWSR/train-clean-images/4x/ -out_dir ../datasets/AIM-RWSR/train-clean-images/4x_degraded/

Training the downstream ESRGAN models
We used the training pipeline from https://github.com/jixiaozhong/RealSR to train our ESRGAN models trained on the high-resolution /1x/ and low-resolution /4x_degraded/ data. The trained ESRGAN models and more details on how to reproduce them will be added here soon.

Training DeFlow

  1. Download and prepare the corresponding training datasets (see above)
  2. Download and prepare the corresponding validation datasets (see above)
  3. Download the pretrained RRDB models (see above)
  4. Run the provided train.py script with the corresponding configs
cd code
python train.py -opt ./confs/DeFlow-AIM-RWSR.yml
python train.py -opt ./confs/DeFlow-NTIRE-RWSR.yml

If you run out of GPU memory you can reduce the batch size or the patch size in the config files. To train without a GPU prefix the commands with CUDA_VISIBLE_DEVICES=-1.

Instructions for training DeFlow on the DPED dataset will be added here soon.

To train DeFlow on other datasets simply create your own config file and change the dataset paths accordingly. To pre-generate the downsampled images that are used as conditional features by DeFlow you can use the ./datasets/create_DeFlow_train_dataset.py script.

Citation

[Paper] CVPR 2021 Oral

@inproceedings{wolf2021deflow,
    author    = {Valentin Wolf and
                Andreas Lugmayr and
                Martin Danelljan and
                Luc Van Gool and
                Radu Timofte},
    title     = {DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows},
    booktitle = {{IEEE/CVF} Conference on Computer Vision and Pattern Recognition, {CVPR}},
    year      = {2021},
    url       = {https://arxiv.org/abs/2101.05796}
}
Owner
Valentin Wolf
CS Student at ETH Zurich
Valentin Wolf
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
Self-Adaptable Point Processes with Nonparametric Time Decays

NPPDecay This is our implementation for the paper Self-Adaptable Point Processes with Nonparametric Time Decays, by Zhimeng Pan, Zheng Wang, Jeff M. P

zpan 2 Sep 24, 2022
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
《Improving Unsupervised Image Clustering With Robust Learning》(2020)

Improving Unsupervised Image Clustering With Robust Learning This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust L

Sungwon Park 129 Dec 27, 2022
SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts

[arXiv] The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, wh

ZOZO, Inc. 138 Nov 24, 2022
Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

BiDR Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval. Requirements torch==

Microsoft 11 Oct 20, 2022
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022
[TPDS'21] COSCO: Container Orchestration using Co-Simulation and Gradient Based Optimization for Fog Computing Environments

COSCO Framework COSCO is an AI based coupled-simulation and container orchestration framework for integrated Edge, Fog and Cloud Computing Environment

imperial-qore 39 Dec 25, 2022
Data and code for the paper "Importance of Kernel Bandwidth in Quantum Machine Learning"

Reproducibility materials for "Importance of Kernel Bandwidth in Quantum Machine Learning" Repo structure: code contains Python scripts used to genera

Ruslan Shaydulin 3 Oct 23, 2022
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022