Unpaired Caricature Generation with Multiple Exaggerations

Overview

CariMe-pytorch

The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations"

examples

CariMe: Unpaired Caricature Generation with Multiple Exaggerations

Zheng Gu, Chuanqi Dong, Jing Huo, Wenbin Li, and Yang Gao

Paper: https://arxiv.org/abs/2010.00246

Prerequisites

  • Python 3.6
  • Pytorch 1.5.1
  • scikit-image 0.17.2

Preparing Dataset

  • Get the Webcaricature dataset, unzip the dataset to the data folder and align the dataset by running the following script:
python alignment.py

Training

Train the Warper:

python train_warper.py

Train the Styler:

python train_styler.py

Testing

  • Test the Warper only:
python test_warper.py --scale 1.0
  • Test the Styler only:
python test_styler.py 
  • Generate caricatures with both exaggeration and style transfer:
python main_generate.py --model_path_warper pretrained/warper.pt --model_path_styler pretrained/styler.pt
  • Generate caricatures with both exaggeration and style transfer for a single image:
python main_generate_single_image.py --model_path_warper pretrained/warper.pt --model_path_styler pretrained/styler.pt --input_path images/Meg Ryan/P00015.jpg --generate_num 5 --scale 1.0 

The above command will translate the input photo into 5 caricatures with different exaggerations and styles:

examples

Pretrained Models

The pre-trained models are shared here.

Citation

If you use this code for your research, please cite our paper.

@article{gu2020carime,
title={CariMe: Unpaired Caricature Generation with Multiple Exaggerations},
author={Gu, Zheng and Dong, Chuanqi and Huo, Jing and Li, Wenbin and Gao, Yang},
journal={arXiv preprint arXiv:2010.00246},
year={2020}
}

Reference

Some of our code is based on FUNIT and UGATIT.

Owner
Gu Zheng
Gu Zheng
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano

yolov5-fire-smoke-detect-python A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano You can see

20 Dec 15, 2022
Tgbox-bench - Simple TGBOX upload speed benchmark

TGBOX Benchmark This script will benchmark upload speed to TGBOX storage. Build

Non 1 Jan 09, 2022
The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue. How do I cite D-REX? For now, cite

Alon Albalak 6 Mar 31, 2022
A tf.keras implementation of Facebook AI's MadGrad optimization algorithm

MADGRAD Optimization Algorithm For Tensorflow This package implements the MadGrad Algorithm proposed in Adaptivity without Compromise: A Momentumized,

20 Aug 18, 2022
A curated list of neural network pruning resources.

A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.

Yang He 1.7k Jan 09, 2023
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models

This repository contains a collection of resources and papers on Diffusion Models and Score-based Models. If there are any missing valuable resources

5.1k Jan 08, 2023
Image-popularity-score - A novel deep regression method for image scoring.

Image-popularity-score - A novel deep regression method for image scoring.

Shoaib ahmed 1 Dec 26, 2021
This repo is developed for Strong Baseline For Vehicle Re-Identification in Track 2 Ai-City-2021 Challenges

A STRONG BASELINE FOR VEHICLE RE-IDENTIFICATION This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition Workshop(CVPR

Cybercore Co. Ltd 78 Dec 29, 2022
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
Consistency Regularization for Adversarial Robustness

Consistency Regularization for Adversarial Robustness Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jiho

40 Dec 17, 2022
A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization

sam.pytorch A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization ( Foret+2020) Paper, Official implementa

Ryuichiro Hataya 102 Dec 28, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022
Companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsura et al.

META-RS This is the companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsu

Bosch Research 7 Dec 09, 2022
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
Only works with the dashboard version / branch of jesse

Jesse optuna Only works with the dashboard version / branch of jesse. The config.yml should be self-explainatory. Installation # install from git pip

Markus K. 8 Dec 04, 2022
Automated detection of anomalous exoplanet transits in light curve data.

Automatically detecting anomalous exoplanet transits This repository contains the source code for the paper "Automatically detecting anomalous exoplan

1 Feb 01, 2022