Aircraft design optimization made fast through modern automatic differentiation

Overview

AeroSandbox ✈️

by Peter Sharpe ( )

Downloads Monthly Downloads Build Status

Overview

AeroSandbox is a Python package for design optimization of engineered systems such as aircraft.

At its heart, AeroSandbox is an optimization suite that combines the ease-of-use of familiar NumPy syntax with the power of modern automatic differentiation.

This automatic differentiation dramatically improves optimization performance on large problems: design problems with tens of thousands of decision variables solve in seconds on a laptop.

AeroSandbox also comes with dozens of end-to-end-differentiable aerospace physics models, allowing you to simultaneously optimize an aircraft's aerodynamics, structures, propulsion, mission trajectory, stability, and more.

VLM Image VLM simulation of a glider, aileron deflections of +-30°. Runtime of 0.35 sec on a typical laptop (i7-8750H).

PANEL Image Panel simulation of a wing (extruded NACA2412, α=15°, AR=4). Note the strong three-dimensionality of the flow near the tip.

Getting Started

Installation

Use pip install aerosandbox[full] for a complete install.

For a lightweight installation with minimal dependencies, use pip install aerosandbox. All optimization, numerics, and physics models are included this headless install, but some visualization dependencies are not installed.

Tutorials, Examples, and Documentation

To get started, check out the tutorials folder here! All tutorials are viewable in-browser, or you can open them as Jupyter notebooks by cloning this repository.

For a more detailed and theory-heavy introduction to AeroSandbox, please see this thesis.

For a yet-more-detailed developer-level description of AeroSandbox modules, please see the developer README.

You can print documentation and examples for any AeroSandbox object by using the built-in help() function (e.g., help(asb.Airplane)). AeroSandbox code is also documented extensively in the source and contains hundreds of unit test examples, so examining the source code can also be useful.

Usage Details

One final point to note: as we're all sensible and civilized here, all inputs and outputs to AeroSandbox are expressed in base SI units, or derived units thereof (e.g, m, N, kg, m/s, J, Pa).

The only exception to this rule is when units are explicitly noted via variable name suffix. For example:

  • battery_capacity -> Joules
  • battery_capacity_watt_hours -> Watt-hours.

All angles are in radians, except for α and β which are in degrees due to long-standing aerospace convention. (In any case, units are marked on all function docstrings.)

If you wish to use other units, consider using aerosandbox.tools.units to convert easily.

Project Details

Contributing

Please feel free to join the development of AeroSandbox - contributions are always so welcome! If you have a change you'd like to make, the easiest way to do that is by submitting a pull request.

The text file CONTRIBUTING.md has more details for developers and power users.

If you've already made several additions and would like to be involved in a more long-term capacity, please message me! Contact information can be found next to my name near the top of this README.

Donating

If you like this software, please consider donating to support development via PayPal or GitHub Sponsors! I'm a grad student, so every dollar that you donate helps wean me off my diet of instant coffee and microwaved ramen noodles.

Bugs

Please, please report all bugs by creating a new issue at https://github.com/peterdsharpe/AeroSandbox/issues!

Versioning

AeroSandbox loosely uses semantic versioning, which should give you an idea of whether or not you can probably expect backward-compatibility and/or new features from any given update. However, the code is a work in progress and things change rapidly - for the time being, please freeze your version of AeroSandbox for any serious deployments. Commercial users: I'm more than happy to discuss consulting work for active AeroSandbox support if this package proves helpful!

Citation

If you find AeroSandbox useful in a research publication, please cite it using the following BibTeX snippet:

@mastersthesis{aerosandbox,
    title = {AeroSandbox: A Differentiable Framework for Aircraft Design Optimization},
    author = {Sharpe, Peter D.},
    school = {Massachusetts Institute of Technology},
    year = {2021}
}

License

MIT License, full terms here.

Stargazers over time

Stargazers over time

Owner
Peter Sharpe
MIT AeroAstro PhD Candidate | Engineering design optimization, aircraft design, and aerodynamics. Hello and welcome to my GitHub! :)
Peter Sharpe
Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms.

Torch-template-for-deep-learning Pytorch implementations of some **classical backbone CNNs, data enhancement, torch loss, attention, visualization and

Li Shengyan 270 Dec 31, 2022
Projects of Andfun Yangon

AndFunYangon Projects of Andfun Yangon First Commit We can use gsearch.py to sea

Htin Aung Lu 1 Dec 28, 2021
AdamW optimizer and cosine learning rate annealing with restarts

AdamW optimizer and cosine learning rate annealing with restarts This repository contains an implementation of AdamW optimization algorithm and cosine

Maksym Pyrozhok 133 Dec 20, 2022
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Arno Barton 1 Oct 29, 2021
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

ROCm Software Platform 29 Nov 16, 2022
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022
Code for "ATISS: Autoregressive Transformers for Indoor Scene Synthesis", NeurIPS 2021

ATISS: Autoregressive Transformers for Indoor Scene Synthesis This repository contains the code that accompanies our paper ATISS: Autoregressive Trans

138 Dec 22, 2022
《Improving Unsupervised Image Clustering With Robust Learning》(2020)

Improving Unsupervised Image Clustering With Robust Learning This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust L

Sungwon Park 129 Dec 27, 2022
Code for Max-Margin Contrastive Learning - AAAI 2022

Max-Margin Contrastive Learning This is a pytorch implementation for the paper Max-Margin Contrastive Learning accepted to AAAI 2022. This repository

Anshul Shah 12 Oct 22, 2022
Unofficial pytorch-lightning implement of Mip-NeRF

mipnerf_pl Unofficial pytorch-lightning implement of Mip-NeRF, Here are some results generated by this repository (pre-trained models are provided bel

Jianxin Huang 159 Dec 23, 2022
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
Honours project, on creating a depth estimation map from two stereo images of featureless regions

image-processing This module generates depth maps for shape-blocked-out images Install If working with anaconda, then from the root directory: conda e

2 Oct 17, 2022
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
Framework for abstracting Amiga debuggers and access to AmigaOS libraries and devices.

Framework for abstracting Amiga debuggers. This project provides abstration to control an Amiga remotely using a debugger. The APIs are not yet stable

Roc Vallès 39 Nov 22, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022