An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Overview

Transformer-in-Transformer Twitter

PyPI Open In Colab Upload Python Package Lint Code Base Code style: black

GitHub License GitHub stars GitHub followers Twitter Follow

An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local patches. Transformer in Transformer uses pixel level attention paired with patch level attention for image classification, in TensorFlow.

PyTorch Implementation

Installation

Run the following to install:

pip install tnt-tensorflow

Developing tnt-tensorflow

To install tnt-tensorflow, along with tools you need to develop and test, run the following in your virtualenv:

git clone https://github.com/Rishit-dagli/Transformer-in-Transformer.git
# or clone your own fork

cd tnt
pip install -e .[dev]

Usage

import tensorflow as tf
from tnt import TNT

tnt = TNT(
    image_size=256,  # size of image
    patch_dim=512,  # dimension of patch token
    pixel_dim=24,  # dimension of pixel token
    patch_size=16,  # patch size
    pixel_size=4,  # pixel size
    depth=5,  # depth
    num_classes=1000,  # output number of classes
    attn_dropout=0.1,  # attention dropout
    ff_dropout=0.1,  # feedforward dropout
)

img = tf.random.uniform(shape=[5, 3, 256, 256])
logits = tnt(img) # (5, 1000)

Want to Contribute 🙋‍♂️ ?

Awesome! If you want to contribute to this project, you're always welcome! See Contributing Guidelines. You can also take a look at open issues for getting more information about current or upcoming tasks.

Want to discuss? 💬

Have any questions, doubts or want to present your opinions, views? You're always welcome. You can start discussions.

Citation

@misc{han2021transformer,
      title={Transformer in Transformer}, 
      author={Kai Han and An Xiao and Enhua Wu and Jianyuan Guo and Chunjing Xu and Yunhe Wang},
      year={2021},
      eprint={2103.00112},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

Copyright 2020 Rishit Dagli

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Comments
  • Add Unit Tests

    Add Unit Tests

    The tests should check for the rank and shape of the output tensors, the test should override tf.test.TestCase base class.

    • [x] #15
    • [x] #16
    • [x] #18
    • [x] #17

    Feel free to take inspiration from:

    • https://github.com/Rishit-dagli/Fast-Transformer/blob/main/fast_transformer/test_fast_transformer.py
    • For parametrization feel free to follow https://stackoverflow.com/a/34094/11878567, can be used in the exact same way with subTest in TensorFlow
    enhancement good first issue 
    opened by Rishit-dagli 3
  • Update Workflows to run tests

    Update Workflows to run tests

    This issue follows #11

    Update GitHub Workflows to:

    • [ ] Run Tests before uploading to PyPI
    • [ ] Create a workflow to run tests on commits

    Feel free to take inspiration from https://github.com/Rishit-dagli/Fast-Transformer/tree/main/.github/workflows

    enhancement good first issue 
    opened by Rishit-dagli 0
  • Creates an Attention layer

    Creates an Attention layer

    Verify output shapes just from the attention layer:

    import tensorflow as tf
    Attention(dim=256)(tf.random.normal([3,256,256]))
    
    # <tf.Tensor: shape=(3, 256, 256), dtype=float32,
    

    Closes #3

    opened by Rishit-dagli 0
  • Put together a TNT class

    Put together a TNT class

    Verify shapes:

    tnt = TNT(
        image_size=256,  # size of image
        patch_dim=512,  # dimension of patch token
        pixel_dim=24,  # dimension of pixel token
        patch_size=16,  # patch size
        pixel_size=4,  # pixel size
        depth=5,  # depth
        num_classes=1000,  # output number of classes
        attn_dropout=0.1,  # attention dropout
        ff_dropout=0.1,  # feedforward dropout
    )
    
    img = tf.random.uniform(shape=[1, 3, 256, 256])
    print(tnt(img).shape)
    
    # (1, 1000)
    ```
    opened by Rishit-dagli 0
  • Create an Attention layerr

    Create an Attention layerr

    Verify output shapes just from the attention layer:

    import tensorflow as tf
    Attention(dim=256)(tf.random.normal([3,256,256]))
    
    # <tf.Tensor: shape=(3, 256, 256), dtype=float32,
    
    opened by Rishit-dagli 0
  • Create a PreNorm layer

    Create a PreNorm layer

    Verify output shapes from this layer:

    import tensorflow as tf
    PreNorm(dim=1, fn=tf.keras.layers.Dense(5))(tf.random.normal([10, 1]))
    
    # <tf.Tensor: shape=(10, 1), dtype=float32,
    
    opened by Rishit-dagli 0
Releases(v0.2.0)
  • v0.2.0(Feb 2, 2022)

    This is an interesting release for the project, including a pre-trained model on ImageNet, reproducibility of paper results, tests, and end-to-end training.

    ✅ Bug Fixes / Improvements

    • Create an end-to-end training example demonstrating how to train a TNT model for image classification through a custom training loop on the TF Flowers dataset (#14)
    • Pre-trained model to reproduce the paper results have been made available (in this release as well as on TensorFlow Hub)
    • Create an off-the-shelf inference example, that highlights how you can directly use the pre-trained model made available
    • Unit Tests for the Attention class (#19)
    • Unit Tests for the main TNT class (#20)

    Full Changelog: https://github.com/Rishit-dagli/Transformer-in-Transformer/compare/v0.1.0...v0.2.0

    Source code(tar.gz)
    Source code(zip)
    tnt_s_patch16_224.tar.gz(84.42 MB)
  • v0.1.0(Dec 3, 2021)

    This is the initial release of TNT TensorFlow and implements Transformers in Transformers as a subclassed TensorFlow model.

    Classes

    • Attention: Implements attention as a TensorFlow Keras Layer making some modifications.
    • PreNorm: Normalize the activations of the previous layer for each given example in a batch independently and apply some function to it, implemented as a TensorFlow Keras Layer.
    • FeedForward: Create a FeedForward neural net with two Dense layers and GELU activation, implemented as a TensorFlow Keras Layer.
    • TNT: Implements the Transformers in Transformers model using all the other classes, and converts to logits. Implemented as a TensorFlow Keras Model.
    Source code(tar.gz)
    Source code(zip)
    tnt_s_patch16_224.tar.gz(84.42 MB)
Owner
Rishit Dagli
High School,TEDx,2xTED-Ed speaker | International Speaker | Microsoft Student Ambassador | Mentor, @TFUGMumbai | Organize @KotlinMumbai
Rishit Dagli
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition

On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition With the spirit of reproducible research, this repository contains codes requ

0 Feb 24, 2022
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr

25 May 29, 2022
Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.

light-weight-depth-estimation Boosting Light-Weight Depth Estimation Via Knowledge Distillation, https://arxiv.org/abs/2105.06143 Junjie Hu, Chenyou F

Junjie Hu 13 Dec 10, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
Benchmarking the robustness of Spatial-Temporal Models

Benchmarking the robustness of Spatial-Temporal Models This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal

Yi Chenyu Ian 15 Dec 16, 2022
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 06, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021) In this repository we provide PyTorch implementations for GeMCL; a

4 Apr 15, 2022
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
RAMA: Rapid algorithm for multicut problem

RAMA: Rapid algorithm for multicut problem Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without

Paul Swoboda 60 Dec 13, 2022
Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

tonne 1.4k Dec 29, 2022
RoFormer_pytorch

PyTorch RoFormer 原版Tensorflow权重(https://github.com/ZhuiyiTechnology/roformer) chinese_roformer_L-12_H-768_A-12.zip (提取码:xy9x) 已经转化为PyTorch权重 chinese_r

yujun 283 Dec 12, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance

Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data

58 Oct 26, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022