This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

Overview

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields

Project Page | Paper | Supplementary | Video | Slides | Blog | Talk

Add Clevr Tranlation Horizontal Cars Interpolate Shape Faces

If you find our code or paper useful, please cite as

@inproceedings{GIRAFFE,
    title = {GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields},
    author = {Niemeyer, Michael and Geiger, Andreas},
    booktitle = {Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
    year = {2021}
}

TL; DR - Quick Start

Rotating Cars Tranlation Horizontal Cars Tranlation Horizontal Cars

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called giraffe using

conda env create -f environment.yml
conda activate giraffe

You can now test our code on the provided pre-trained models. For example, simply run

python render.py configs/256res/cars_256_pretrained.yaml

This script should create a model output folder out/cars256_pretrained. The animations are then saved to the respective subfolders in out/cars256_pretrained/rendering.

Usage

Datasets

To train a model from scratch or to use our ground truth activations for evaluation, you have to download the respective dataset.

For this, please run

bash scripts/download_dataset.sh

and following the instructions. This script should download and unpack the data automatically into the data/ folder.

Controllable Image Synthesis

To render images of a trained model, run

python render.py CONFIG.yaml

where you replace CONFIG.yaml with the correct config file. The easiest way is to use a pre-trained model. You can do this by using one of the config files which are indicated with *_pretrained.yaml.

For example, for our model trained on Cars at 256x256 pixels, run

python render.py configs/256res/cars_256_pretrained.yaml

or for celebA-HQ at 256x256 pixels, run

python render.py configs/256res/celebahq_256_pretrained.yaml

Our script will automatically download the model checkpoints and render images. You can find the outputs in the out/*_pretrained folders.

Please note that the config files *_pretrained.yaml are only for evaluation or rendering, not for training new models: when these configs are used for training, the model will be trained from scratch, but during inference our code will still use the pre-trained model.

FID Evaluation

For evaluation of the models, we provide the script eval.py. You can run it using

python eval.py CONFIG.yaml

The script generates 20000 images and calculates the FID score.

Note: For some experiments, the numbers in the paper might slightly differ because we used the evaluation protocol from GRAF to fairly compare against the methods reported in GRAF.

Training

Finally, to train a new network from scratch, run

python train.py CONFIG.yaml

where you replace CONFIG.yaml with the name of the configuration file you want to use.

You can monitor on http://localhost:6006 the training process using tensorboard:

cd OUTPUT_DIR
tensorboard --logdir ./logs

where you replace OUTPUT_DIR with the respective output directory. For available training options, please take a look at configs/default.yaml.

2D-GAN Baseline

For convinience, we have implemented a 2D-GAN baseline which closely follows this GAN_stability repo. For example, you can train a 2D-GAN on CompCars at 64x64 pixels similar to our GIRAFFE method by running

python train.py configs/64res/cars_64_2dgan.yaml

Using Your Own Dataset

If you want to train a model on a new dataset, you first need to generate ground truth activations for the intermediate or final FID calculations. For this, you can use the script in scripts/calc_fid/precalc_fid.py. For example, if you want to generate an FID file for the comprehensive cars dataset at 64x64 pixels, you need to run

python scripts/precalc_fid.py  "data/comprehensive_cars/images/*.jpg" --regex True --gpu 0 --out-file "data/comprehensive_cars/fid_files/comprehensiveCars_64.npz" --img-size 64

or for LSUN churches, you need to run

python scripts/precalc_fid.py path/to/LSUN --class-name scene_categories/church_outdoor_train_lmdb --lsun True --gpu 0 --out-file data/church/fid_files/church_64.npz --img-size 64

Note: We apply the same transformations to the ground truth images for this FID calculation as we do during training. If you want to use your own dataset, you need to adjust the image transformations in the script accordingly. Further, you might need to adjust the object-level and camera transformations to your dataset.

Evaluating Generated Images

We provide the script eval_files.py for evaluating the FID score of your own generated images. For example, if you would like to evaluate your images on CompCars at 64x64 pixels, save them to an npy file and run

python eval_files.py --input-file "path/to/your/images.npy" --gt-file "data/comprehensive_cars/fid_files/comprehensiveCars_64.npz"

Futher Information

More Work on Implicit Representations

If you like the GIRAFFE project, please check out related works on neural representions from our group:

A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 02, 2022
BC3407-Group-5-Project - BC3407 Group Project With Python

BC3407-Group-5-Project As the world struggles to contain the ever-changing varia

1 Jan 26, 2022
This repository contains small projects related to Neural Networks and Deep Learning in general.

ILearnDeepLearning.py Description People say that nothing develops and teaches you like getting your hands dirty. This repository contains small proje

Piotr Skalski 1.2k Dec 22, 2022
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
Bounding Wasserstein distance with couplings

BoundWasserstein These scripts reproduce the results of the article Bounding Wasserstein distance with couplings by Niloy Biswas and Lester Mackey. ar

Niloy Biswas 1 Jan 11, 2022
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).

DeepBDC for few-shot learning        Introduction In this repo, we provide the implementation of the following paper: "Joint Distribution Matters: Dee

FeiLong 116 Dec 19, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 75 Jan 08, 2023
Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)

Propose-Reduce VIS This repo contains the official implementation for the paper: Video Instance Segmentation with a Propose-Reduce Paradigm Huaijia Li

DV Lab 39 Nov 23, 2022
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
Edge Restoration Quality Assessment

ERQA - Edge Restoration Quality Assessment ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR

MSU Video Group 27 Dec 17, 2022