This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest

Overview

Rachford-Rice Contest

This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest. Can you solve the Rachford-Rice problem for all these cases? With the initiative of Curtis Hays Whitson, and the extensive help by Aaron Zick, the original Rachford-Rice contest offered $1000 to any student who could solve the problem for all cases. Only three people were able to develop procedures that passed all the test, and none of these were students.

Today we are happy to re-release the Rachford-Rice contest, but now for Python. There are several differences between the original contest and this version, the main one being that this version will focus mainly on passing all the tests and not that much on speed. A timer will be set for your calculations, so if you want to optimize for speed as well you are free to do so.

To access the original version of the Rachford-Rice contest, go to this link.

Table of Contents

How do you access the code?

You can either use Git to clone the repository using

git clone https://github.com/WhitsonAS/Rachford-Rice-Contest.git

If you do not want to use Git or know how to use Git, you can manually download the repository by clicking the green code button and press the option called "Download ZIP".

Code download button

How do you enter your code?

The main stucture of the code is not to be modified at all, so you are only supposed to write code in certain designated files or functions. The file that contains the function which you have to change is called rachford_rice_solution.py and the function is called rachford_rice_solver(). This is the only place where you can change anything.

The function takes in the number of components (Nc) as an integer, the composition (zi) as a numpy array, and the K-values (Ki) as a numpy array.

The output of the function must be given in the following order, as the following types. The number of iterations used (N) as an integer, the vapor molar composition (yi) as a numpy array, the liquid molar composition (xi) as a numpy array, the vapor molar fraction (V) as a float, and the liquid molar fraction (L) as a float.

For debugging purposes, there is an option in section (3) in the main.py file in the function called is_converged() where you can turn on an optinal variable called print_to_console (which is False by default) by setting it to True. This feature will print some useful information about which tests pass / fail for each case.

See video 5 for an example of how to add you code.

Note that you're not allowed to change the floating point precision to get the desired threshold! The goal is that your algorithm should be able to have a threshold equal to your floating point precision. Any solution based on floating point manipulation of this kind will be disqualified.

When you have developed a code that you want to submit, make a folder within the folder called Solutions with the date of your submission (YYYYMMDD) and your name (e.g. 20211015-Markus-Hays-Nielsen) and add a file called solution.py within this folder (the relative path should look like this: Solutions/20211015-Markus-Hays-Nielsen/solution-py). The solution file should be possible to copy and paste straight into rachford_rice_solution.py and run with no modifications needed. If there is any issue with running your solution, you will be contacted and asked to fix the issue. If no answer is recived, the solution will be removed. This is meant to make everything easier for the reviewer and anyone else who wants to try your code.

The procedure for adding your code to the repository is to first make a new branch with your name (e.g. markus-hays-nielsen) and once you are ready to submit you can create a pull request with your file(s) in the structure detailed above. Once your code has been reviewed, we will add your code to the main branch and it will become public.

If you want to submit you solution privately, please contact us by mail at [email protected].

Basic theory about Rachford-Rice problem

The Rachford-Rice equation is a combination of (1) the material balance equation, (2) the assumption that the vapor (yi) and liquid (xi) compositions are defined by a constant set of K-values (Ki) and (3) that the sum of vapor and liquid molar fractions sum to one.

The equation is given by

equation

where zi is the total molar composition of component i, and V is the vapor molar fraction defined by

equation

where nV is the total molar amount of the vapor phase and nL is the total molar amount of the liquid phase.

The constraints for passing the contest are given by a set of test functions (R) and are given by

Vapor composition test

equation

Liquid composition test

equation

Vapor and liquid fraction test

equation

Material balance test

equation

K-value test

equation

where the threshold value (εt) is set to be 10-15.

The tests will be judged based on their severity which is given by

equation

For more information about the Rachford-Rice solution, watch the following videos:

List of participants who have successfully completed

  • Aaron Zick
  • Michael Michelsen
  • Kim Knudsen
⚖️ A Statutory Article Retrieval Dataset in French.

A Statutory Article Retrieval Dataset in French This repository contains the Belgian Statutory Article Retrieval Dataset (BSARD), as well as the code

Maastricht Law & Tech Lab 19 Nov 17, 2022
LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation

LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation Tasks | Datasets | LongLM | Baselines | Paper Introduction LOT is a ben

46 Dec 28, 2022
Contract Understanding Atticus Dataset

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
An IVR Chatbot which can exponentially reduce the burden of companies as well as can improve the consumer/end user experience.

IVR-Chatbot Achievements 🏆 Team Uhtred won the Maverick 2.0 Bot-a-thon 2021 organized by AbInbev India. ❓ Problem Statement As we all know that, lot

ARYAMAAN PANDEY 9 Dec 08, 2022
Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch

Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch. Topics: Face detection with Detectron 2, Time Series anomaly detection with LSTM Autoenc

Venelin Valkov 1.8k Dec 31, 2022
📔️ Generate a text-based journal from a template file.

JGen 📔️ Generate a text-based journal from a template file. Contents Getting Started Example Overview Usage Details Reserved Keywords Gotchas Getting

Harrison Broadbent 21 Sep 25, 2022
Extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

Housegan-data-reader House-GAN++ (data-reader) Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN

Sepid Hosseini 13 Nov 24, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
A python framework to transform natural language questions to queries in a database query language.

__ _ _ _ ___ _ __ _ _ / _` | | | |/ _ \ '_ \| | | | | (_| | |_| | __/ |_) | |_| | \__, |\__,_|\___| .__/ \__, | |_| |_| |___/

Machinalis 1.2k Dec 18, 2022
Download videos from YouTube/Twitch/Twitter right in the Windows Explorer, without installing any shady shareware apps

youtube-dl and ffmpeg Windows Explorer Integration Download videos from YouTube/Twitch/Twitter and more (any platform that is supported by youtube-dl)

Wolfgang 226 Dec 30, 2022
Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP This repository maintains some utility scripts for retrieving and preprocessing Wikipedia text

Masatoshi Suzuki 44 Oct 19, 2022
This repository is home to the Optimus data transformation plugins for various data processing needs.

Transformers Optimus's transformation plugins are implementations of Task and Hook interfaces that allows execution of arbitrary jobs in optimus. To i

Open Data Platform 37 Dec 14, 2022
Integrating the Best of TF into PyTorch, for Machine Learning, Natural Language Processing, and Text Generation. This is part of the CASL project: http://casl-project.ai/

Texar-PyTorch is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar

ASYML 726 Dec 30, 2022
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

OpenBMB 377 Jan 02, 2023
ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Description: ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39

GOKHAN OZSARI 5 Dec 16, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Soohwan Kim 26 Dec 14, 2022
Hierarchical unsupervised and semi-supervised topic models for sparse count data with CorEx

Anchored CorEx: Hierarchical Topic Modeling with Minimal Domain Knowledge Correlation Explanation (CorEx) is a topic model that yields rich topics tha

Greg Ver Steeg 592 Dec 18, 2022
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT

NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT Still in alpha, lots of changes anticipated. View demo on n

Victor Dibia 220 Dec 11, 2022
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow. This is part of the CASL project: http://casl-project.ai/

Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides

ASYML 2.3k Jan 07, 2023