[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Related tags

Deep LearningSDCLR
Overview

Self-Damaging Contrastive Learning

Introduction

The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervised training on real-world data applications. However, unlabeled data in reality is commonly imbalanced and shows a long-tail distribution, and it is unclear how robustly the latest contrastive learning methods could perform in the practical scenario. This paper proposes to explicitly tackle this challenge, via a principled framework called Self-Damaging Contrastive Learning (SDCLR), to automatically balance the representation learning without knowing the classes. Our main inspiration is drawn from the recent finding that deep models have difficult-to-memorize samples, and those may be exposed through network pruning [1]. It is further natural to hypothesize that long-tail samples are also tougher for the model to learn well due to insufficient examples. Hence, the key innovation in SDCLR is to create a dynamic self-competitor model to contrast with the target model, which is a pruned version of the latter. During training, contrasting the two models will lead to adaptive online mining of the most easily forgotten samples for the current target model, and implicitly emphasize them more in the contrastive loss. Extensive experiments across multiple datasets and imbalance settings show that SDCLR significantly improves not only overall accuracies but also balancedness, in terms of linear evaluation on the full-shot and few-shot settings.

[1] Hooker, Sara, et al. "What Do Compressed Deep Neural Networks Forget?." arXiv preprint arXiv:1911.05248 (2019).

Method

pipeline The overview of the proposed SDCLR framework. Built on top of simCLR pipeline by default, the uniqueness of SDCLR lies in its two different network branches: one is the target model to be trained, and the other "self-competitor" model that is pruned from the former online. The two branches share weights for their non-pruned parameters. Either branch has its independent batch normalization layers. Since the self-competitor is always obtained and updated from the latest target model, the two branches will co-evolve during training. Their contrasting will implicitly give more weights on long-tail samples.

Environment

Requirements:

pytorch 1.7.1 
opencv-python
scikit-learn 
matplotlib

Recommend installation cmds (linux)

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.2 -c pytorch # change cuda version according to hardware
pip install opencv-python
conda install -c conda-forge scikit-learn matplotlib

Details about and Imagenet-100-LT Imagenet-LT-exp

Imagenet-100-LT sampling list

Imagenet-LT-exp sampling list

Pretrained models downloading

CIFAR10: pretraining, fine-tuning

CIFAR100: pretraining, fine-tuning

Imagenet100/Imagenet: pretraining, fine-tuning

Train and evaluate pretrained models

Before all

chmod +x  cmds/shell_scrips/*

CIFAR10

SimCLR on balanced training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_b
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_b  --only_finetuning True  --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar10
# few shot
python exp_analyse.py --dataset cifar10 --fewShot

SimCLR on long tail training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_i
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5 
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_i --only_finetuning True --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar10 --LT
# few shot
python exp_analyse.py --dataset cifar10 --LT --fewShot

SDCLR on long tail training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_i --prune True --prune_percent 0.9 --prune_dual_bn True
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5 
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_i --prune True --prune_percent 0.9 --prune_dual_bn True --only_finetuning True --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar10 --LT --prune
# few shot
python exp_analyse.py --dataset cifar10 --LT --prune --fewShot

CIFAR100

SimCLR on balanced training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_b
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_b --only_finetuning True --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar100
# few shot
python exp_analyse.py --dataset cifar100 --fewShot

SimCLR on long tail training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_i
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_i --only_finetuning True --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar100 --LT
# few shot
python exp_analyse.py --dataset cifar100 --LT --fewShot

SDCLR on long tail training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_i --prune True --prune_percent 0.9 --prune_dual_bn True
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_i --prune True --prune_percent 0.9 --prune_dual_bn True --only_finetuning True --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar100 --LT --prune
# few shot
python exp_analyse.py --dataset cifar100 --LT --prune --fewShot

Imagenet-100-LT

SimCLR on balanced training datasets

# pre-train and finetune
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_100_BL_train

# evaluate pretrained model (after download and unzip the pretrained model)
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_100_BL_train --only_finetuning True --test_only True

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset imagenet100
# few shot
python exp_analyse.py --dataset imagenet100 --fewShot

SimCLR on long tail training datasets

# pre-train and finetune
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_100_LT_train

# evaluate pretrained model (after download and unzip the pretrained model)
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4860 -w 10 --split imageNet_100_LT_train --only_finetuning True --test_only True

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset imagenet100 --LT
# few shot
python exp_analyse.py --dataset imagenet100 --LT --fewShot

SDCLR on long tail training datasets

# pre-train and finetune
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_100_LT_train --prune True --prune_percent 0.3 --prune_dual_bn True --temp 0.3

# evaluate pretrained model (after download and unzip the pretrained model)
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4860 -w 10 --split imageNet_100_LT_train --prune True --prune_percent 0.3 --prune_dual_bn True --temp 0.3 --only_finetuning True --test_only True

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset imagenet100 --LT --prune
# few shot
python exp_analyse.py --dataset imagenet100 --LT --prune --fewShot

Imagenet-Exp-LT

SimCLR on balanced training datasets

# pre-train and finetune
./cmds/shell_scrips/imagenet-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_BL_exp_train

# evaluate pretrained model (after download and unzip the pretrained model)
./cmds/shell_scrips/imagenet-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_BL_exp_train --only_finetuning True --test_only True

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset imagenet
# few shot
python exp_analyse.py --dataset imagenet --fewShot

SimCLR on long tail training datasets

# pre-train and finetune
./cmds/shell_scrips/imagenet-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_LT_exp_train

# evaluate pretrained model (after download and unzip the pretrained model)
./cmds/shell_scrips/imagenet-res50-LT.sh --data \path\to\imagenet -g 2 -p 4868 -w 10 --split imageNet_LT_exp_train --only_finetuning True --test_only True

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset imagenet --LT
# few shot
python exp_analyse.py --dataset imagenet --LT --fewShot

Citation

@inproceedings{
jiang2021self,
title={Self-Damaging Contrastive Learning},
author={Jiang, Ziyu and Chen, Tianlong and Mortazavi, Bobak and Wang, Zhangyang},
booktitle={International Conference on Machine Learning},
year={2021}
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

ISL This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted

19 May 04, 2022
A Python library that provides a simplified alternative to DBAPI 2

A Python library that provides a simplified alternative to DBAPI 2. It provides a facade in front of DBAPI 2 drivers.

Tony Locke 44 Nov 17, 2021
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"

GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language

137 Jan 02, 2023
Modification of convolutional neural net "UNET" for image segmentation in Keras framework

ZF_UNET_224 Pretrained Model Modification of convolutional neural net "UNET" for image segmentation in Keras framework Requirements Python 3.*, Keras

209 Nov 02, 2022
In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model trainin

GrayLee 8 Dec 27, 2022
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimization"

Riggable 3D Face Reconstruction via In-Network Optimization Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimizati

130 Jan 02, 2023
This repo includes the supplementary of our paper "CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels"

Supplementary Materials for CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels This repository includes all supplementary mater

Zhiwei Li 0 Jan 05, 2022
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
potpourri3d - An invigorating blend of 3D geometry tools in Python.

A Python library of various algorithms and utilities for 3D triangle meshes and point clouds. Managed by Nicholas Sharp, with new tools added lazily as needed. Currently, mainly bindings to C++ tools

Nicholas Sharp 295 Jan 05, 2023
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022