Static-test - A playground to play with ideas related to testing the comparability of the code

Overview

Static test playground

⚠️ The code is just an experiment. Compiles and runs on Ubuntu 20.04. Work with other systems is not guaranteed. ⚠️

What is a static test

If we want to check that some code does not compile there is no way to write a test for it.

This repo aims at solving this problem.

How it looks to the user

The proposal for the user interface for this feature is to piggyback on GTest pipeline as follows:

#include <gtest/gtest.h>
#include "static_test.h"

STATIC_TEST(foo) {
  Foo foo;
  foo.bar();
  SHOULD_NOT_COMPILE(foo.stuff());
  SHOULD_NOT_COMPILE_WITH_MESSAGE(foo.stuff(), "has no member named 'stuff'");
}

The user is able to write a code to check that some code should not compile. All the code outside of the SHOULD_NOT_COMPILE or SHOULD_NOT_COMPILE_WITH_MESSAGE macros is compiled and run as expected. The compiler will happily report any errors back to the user if they should make any within the STATIC_TEST scope. If the code under SHOULD_NOT_COMPILE ends up actually compiling a runtime error will be issued with a description of this.

This test can be run within this repo as:

./bazelisk test --test_output=all //foo:test_foo

The approximate output of this test if nothing fails would be smth like this:

[----------] 1 test from StaticTest__foo
[ RUN      ] StaticTest__foo.foo
[ COMPILE STATIC TEST ] foo
[                  OK ] foo
[       OK ] StaticTest__foo.foo (966 ms)
[----------] 1 test from StaticTest__foo (966 ms total)

If there is a failure, the line that causes the failure will be printed like so:

[----------] 1 test from StaticTest__FooMixedCorrectAndWrongTest
[ RUN      ] StaticTest__SomeTest.SomeTest
[ COMPILE STATIC TEST ] SomeTest
ERROR: foo/test_foo.cpp:35: must fail to compile but instead compiled without error.
foo/test_foo.cpp:0: Failure
Some of the static tests failed. See above for error.
[              FAILED ] SomeTest
[  FAILED  ] StaticTest__SomeTest.SomeTest (1403 ms)
[----------] 1 test from StaticTest__SomeTest (1403 ms total)

Currently, the code expects to have a compilation database with at the root of the project. This can be generated from a bazel build using the following repository: https://github.com/grailbio/bazel-compilation-database. Just download it anywhere and call the generate.sh script in the folder of this project.

Eventually, we might want to plug this into the build system to make sure we have everything at hand when running the test.

How to check that something fails to compile

We obviously cannot write a normal unit test for this, as if we write code that does not compile it, well, does not compile. The only way I can think of here is to run an external tool.

So the STATIC_TEST macro would expand into a class that will do work in its constructor. It will essentially call an external tool providing it with the name of the static test and a path to the current file utilizing __FILE__. If we know the compilation flags for this file we can write a new temporary cpp file with the contents:

#include <gtest/gtest.h>

#include "foo/foo.h"
#include "static_test/static_test.h"

int main()
{
  Foo foo;
  foo.bar();
  foo.stuff();
  foo.baz();
  return 0;
}

We can then compile this file using all the same compilation flags and check if there is an error that matches the error message regex provided into the message. If there is an error, then we pass the test. If there is no error that matches, we fail the test.

Owner
Igor Bogoslavskyi
Researcher interested in LiDAR scene understanding, localization and mapping.
Igor Bogoslavskyi
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
Code accompanying the paper "Wasserstein GAN"

Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an

3.1k Jan 01, 2023
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom

Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom Sample on-line plotting while training(avg loss)/testing(writ

Jingwei Zhang 269 Nov 15, 2022
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

Iñigo Alonso Ruiz 58 Dec 15, 2022
Line-level Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Line-level Handwritten Text Recognition with TensorFlow This model is an extended version of the Simple HTR system implemented by @Harald Scheidl and

Hoàng Tùng Lâm (Linus) 72 May 07, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
Calibrated Hyperspectral Image Reconstruction via Graph-based Self-Tuning Network.

mask-uncertainty-in-HSI This repository contains the testing code and pre-trained models for the paper Calibrated Hyperspectral Image Reconstruction v

JIAMIAN WANG 9 Dec 29, 2022
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
Trajectory Prediction with Graph-based Dual-scale Context Fusion

DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C

HKUST Aerial Robotics Group 103 Jan 04, 2023
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023