Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Overview

Nonuniform-to-Uniform Quantization

This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation"

In this study, we propose a quantization method that can learn the non-uniform input thresholds to maintain the strong representation ability of nonuniform methods, while output uniform quantized levels to be hardware-friendly and efficient as the uniform quantization for model inference.

To train the quantized network with learnable input thresholds, we introduce a generalized straight-through estimator (G-STE) for intractable backward derivative calculation w.r.t. threshold parameters.

The formula for N2UQ is simply as follows,

Forward pass:

Backward pass:

Moreover, we proposed L1 norm based entropy preserving weight regularization for weight quantization.

Citation

If you find our code useful for your research, please consider citing:

@inproceedings{liu2022nonuniform,
  title={Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation},
  author={Liu, Zechun and Cheng, Kwang-Ting and Huang, Dong and Xing, Eric and Shen, Zhiqiang},
  journal={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2022}
}

Run

1. Requirements:

  • python 3.6, pytorch 1.7.1, torchvision 0.8.2
  • gdown

2. Data:

  • Download ImageNet dataset

3. Pretrained Models:

  • pip install gdown # gdown will automatically download the models
  • If gdown doesn't work, you may need to manually download the pretrained models and put them in the correponding ./models/ folder.

4. Steps to run:

(1) For ResNet architectures:

  • Change directory to ./resnet/
  • Run bash run.sh architecture n_bits quantize_downsampling
  • E.g., bash run.sh resnet18 2 0 for quantize resnet18 to 2-bit without quantizing downsampling layers

(2) For MobileNet architectures:

  • Change directory to ./mobilenetv2/
  • Run bash run.sh

Models

1. ResNet

Network Methods W2/A2 W3/A3 W4/A4
ResNet-18
PACT 64.4 68.1 69.2
DoReFa-Net 64.7 67.5 68.1
LSQ 67.6 70.2 71.1
N2UQ 69.4 Model-Res18-2bit 71.9 Model-Res18-3bit 72.9 Model-Res18-4bit
N2UQ * 69.7 Model-Res18-2bit 72.1 Model-Res18-3bit 73.1 Model-Res18-4bit
ResNet-34
LSQ 71.6 73.4 74.1
N2UQ 73.3 Model-Res34-2bit 75.2 Model-Res34-3bit 76.0 Model-Res34-4bit
N2UQ * 73.4 Model-Res34-2bit 75.3 Model-Res34-3bit 76.1 Model-Res34-4bit
ResNet-50
PACT 64.4 68.1 69.2
LSQ 67.6 70.2 71.1
N2UQ 75.8 Model-Res50-2bit 77.5 Model-Res50-3bit 78.0 Model-Res50-4bit
N2UQ * 76.4 Model-Res50-2bit 77.6 Model-Res50-3bit 78.0 Model-Res50-4bit

Note that N2UQ without * denotes quantizing all the convolutional layers except the first input convolutional layer.

N2UQ with * denotes quantizing all the convolutional layers except the first input convolutional layer and three downsampling layers.

W2/A2, W3/A3, W4/A4 denote the cases where the weights and activations are both quantized to 2 bits, 3 bits, and 4 bits, respectively.

2. MobileNet

Network Methods W4/A4
MobileNet-V2 N2UQ 72.1 Model-MBV2-4bit

Contact

Zechun Liu, HKUST (zliubq at connect.ust.hk)

Owner
Zechun Liu
Ph.D student in HKUST and visiting scholar in CMU
Zechun Liu
MTA:SA Server Configer.

MTAConfiger MTA:SA Server Configer. Hi 👋 , I'm Alireza A Python Developer Boy 🔭 I’m currently working on my C# projects 🌱 I’m currently Learning CS

3 Jun 07, 2022
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023
A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

Taojiannan Yang 72 Nov 09, 2022
The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

30 Nov 12, 2022
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Official code for "Decoupling Zero-Shot Semantic Segmentation"

Decoupling Zero-Shot Semantic Segmentation This is the official code for the arxiv. ZegFormer is the first framework that decouple the zero-shot seman

Jian Ding 108 Dec 30, 2022
Mask-invariant Face Recognition through Template-level Knowledge Distillation

Mask-invariant Face Recognition through Template-level Knowledge Distillation This is the official repository of "Mask-invariant Face Recognition thro

Fadi Boutros 35 Dec 06, 2022
ReGAN: Sequence GAN using RE[INFORCE|LAX|BAR] based PG estimators

Sequence Generation with GANs trained by Gradient Estimation Requirements: PyTorch v0.3 Python 3.6 CUDA 9.1 (For GPU) Origin The idea is from paper Se

40 Nov 03, 2022
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc

Xu Luo 76 Dec 11, 2022
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Zidong LIU 1 Dec 15, 2021
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021
Deep functional residue identification

DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio

Flatiron Institute 156 Dec 25, 2022
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022