A PyTorch library and evaluation platform for end-to-end compression research

Overview

ID-CompressAI-logo

CompressAI

License PyPI Downloads

CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research.

CompressAI currently provides:

  • custom operations, layers and models for deep learning based data compression
  • a partial port of the official TensorFlow compression library
  • pre-trained end-to-end compression models for learned image compression
  • evaluation scripts to compare learned models against classical image/video compression codecs

PSNR performances plot on Kodak

Note: Multi-GPU support is now experimental.

Installation

CompressAI supports python 3.6+ and PyTorch 1.7+.

pip:

pip install compressai

Note: wheels are available for Linux and MacOS.

From source:

A C++17 compiler, a recent version of pip (19.0+), and common python packages are also required (see setup.py for the full list).

To get started locally and install the development version of CompressAI, run the following commands in a virtual environment:

git clone https://github.com/InterDigitalInc/CompressAI compressai
cd compressai
pip install -U pip && pip install -e .

For a custom installation, you can also run one of the following commands:

  • pip install -e '.[dev]': install the packages required for development (testing, linting, docs)
  • pip install -e '.[tutorials]': install the packages required for the tutorials (notebooks)
  • pip install -e '.[all]': install all the optional packages

Note: Docker images will be released in the future. Conda environments are not officially supported.

Documentation

Usage

Examples

Script and notebook examples can be found in the examples/ directory.

To encode/decode images with the provided pre-trained models, run the codec.py example:

python3 examples/codec.py --help

An examplary training script with a rate-distortion loss is provided in examples/train.py. You can replace the model used in the training script with your own model implemented within CompressAI, and then run the script for a simple training pipeline:

python3 examples/train.py -d /path/to/my/image/dataset/ --epochs 300 -lr 1e-4 --batch-size 16 --cuda --save

Note: the training example uses a custom ImageFolder structure.

A jupyter notebook illustrating the usage of a pre-trained model for learned image compression is also provided in the examples directory:

pip install -U ipython jupyter ipywidgets matplotlib
jupyter notebook examples/

Evaluation

To evaluate a trained model on your own dataset, CompressAI provides an evaluation script:

python3 -m compressai.utils.eval_model checkpoint /path/to/images/folder/ -a $ARCH -p $MODEL_CHECKPOINT...

To evaluate traditional image/video codecs:

python3 -m compressai.utils.bench --help
python3 -m compressai.utils.bench bpg --help
python3 -m compressai.utils.bench vtm --help

Tests

Run tests with pytest:

pytest -sx --cov=compressai --cov-append --cov-report term-missing tests

Slow tests can be skipped with the -m "not slow" option.

License

CompressAI is licensed under the Apache License, Version 2.0

Contributing

We welcome feedback and contributions. Please open a GitHub issue to report bugs, request enhancements or if you have any questions.

Before contributing, please read the CONTRIBUTING.md file.

Authors

  • Jean Bégaint, Fabien Racapé, Simon Feltman and Akshay Pushparaja, InterDigital AI Lab.

Citation

If you use this project, please cite the relevant original publications for the models and datasets, and cite this project as:

@article{begaint2020compressai,
	title={CompressAI: a PyTorch library and evaluation platform for end-to-end compression research},
	author={B{\'e}gaint, Jean and Racap{\'e}, Fabien and Feltman, Simon and Pushparaja, Akshay},
	year={2020},
	journal={arXiv preprint arXiv:2011.03029},
}

Related links

implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Kin-Yiu, Wong 1.8k Jan 04, 2023
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
Bio-OFC gym implementation and Gym-Fly environment

Bio-OFC gym implementation and Gym-Fly environment This repository includes the gym compatible implementation of the Bio-OFC algorithm from the paper

Siavash Golkar 1 Nov 16, 2021
SmallInitEmb - LayerNorm(SmallInit(Embedding)) in a Transformer to improve convergence

SmallInitEmb LayerNorm(SmallInit(Embedding)) in a Transformer I find that when t

PENG Bo 11 Dec 25, 2022
Kindle is an easy model build package for PyTorch.

Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? wh

Jongkuk Lim 77 Nov 11, 2022
CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

📖 Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) 🔥 If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 04, 2023
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Jan 08, 2023
AAAI 2022: Stationary diffusion state neural estimation

Stationary Diffusion State Neural Estimation Although many graph-based clustering methods attempt to model the stationary diffusion state in their obj

绽琨 33 Nov 24, 2022
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023
Codebase for testing whether hidden states of neural networks encode discrete structures.

structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for

John Hewitt 349 Dec 17, 2022
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
Power Core Simulator!

Power Core Simulator Power Core Simulator is a simulator based off the Roblox game "Pinewood Builders Computer Core". In this simulator, you can choos

BananaJeans 1 Nov 13, 2021
Example of semantic segmentation in Keras

keras-semantic-segmentation-example Example of semantic segmentation in Keras Single class example: Generated data: random ellipse with random color o

53 Mar 23, 2022
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022
Neural Tangent Generalization Attacks (NTGA)

Neural Tangent Generalization Attacks (NTGA) ICML 2021 Video | Paper | Quickstart | Results | Unlearnable Datasets | Competitions | Citation Overview

Chia-Hung Yuan 34 Nov 25, 2022