🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

Overview

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval

🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

framework

We have two codebases. For the final submission, we conduct the feature ensemble, where features are from two codebases.

Part One is at here: https://github.com/ShuaiBai623/AIC2021-T5-CLV

Part Two is at here: https://github.com/layumi/NLP-AICity2021

Prepare

  • Preprocess the dataset to prepare frames, motion maps, NLP augmentation

scripts/extract_vdo_frms.py is a Python script that is used to extract frames.

scripts/get_motion_maps.py is a Python script that is used to get motion maps.

scripts/deal_nlpaug.py is a Python script that is used for NLP augmentation.

  • Download the pretrained models of Part One to checkpoints. The checkpoints can be found here. The best score of a single model on TestA is 0.1927 from motion_effb3_NOCLS_nlpaug_320.pth.

The directory structures in data and checkpoints are as follows:

.
├── checkpoints
│   ├── motion_effb2_1CLS_nlpaug_288.pth
│   ├── motion_effb3_NOCLS_nlpaug_320.pth
│   ├── motion_SE_3CLS_nonlpaug_288.pth
│   ├── motion_SE_NOCLS_nlpaug_288.pth
│   └── motion_SE_NOCLS_nonlpaug_288.pth
└── data
    ├── AIC21_Track5_NL_Retrieval
    │   ├── train
    │   └── validation
    ├── motion_map 
    ├── test-queries.json
    ├── test-queries_nlpaug.json    ## NLP augmentation (Refer to scripts/deal_nlpaug.py)
    ├── test-tracks.json
    ├── train.json
    ├── train_nlpaug.json
    ├── train-tracks.json
    ├── train-tracks_nlpaug.json    ## NLP augmentation (Refer to scripts/deal_nlpaug.py)
    ├── val.json
    └── val_nlpaug.json             ## NLP augmentation (Refer to scripts/deal_nlpaug.py)

Part One

  • Modify the data paths in config.py

Train

The configuration files are in configs.

CUDA_VISIBLE_DEVICES=0,1,2,3 python -u main.py --name your_experiment_name --config your_config_file |tee log

Test

Change the RESTORE_FROM in your configuration file.

python -u test.py --config your_config_file

Extract the visual and text embeddings. The extracted embeddings can be found here.

python -u test.py --config configs/motion_effb2_1CLS_nlpaug_288.yaml
python -u test.py --config configs/motion_SE_NOCLS_nlpaug_288.yaml
python -u test.py --config configs/motion_effb2_1CLS_nlpaug_288.yaml
python -u test.py --config configs/motion_SE_3CLS_nonlpaug_288.yaml
python -u test.py --config configs/motion_SE_NOCLS_nonlpaug_288.yaml

Part Two

Link

Submission

During the inference, we average all the frame features of the target in each track as track features, the embeddings of text descriptions are also averaged as the query features. The cosine distance is used for ranking as the final result.

  • Reproduce the best submission. ALL extracted embeddings are in the folder output:
python scripts/get_submit.py

Friend Links:

Jigsaw Rate Severity of Toxic Comments

Jigsaw Rate Severity of Toxic Comments

Guanshuo Xu 66 Nov 30, 2022
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Wenwen Yu 255 Dec 29, 2022
Weakly- and Semi-Supervised Panoptic Segmentation (ECCV18)

Weakly- and Semi-Supervised Panoptic Segmentation by Qizhu Li*, Anurag Arnab*, Philip H.S. Torr This repository demonstrates the weakly supervised gro

Qizhu Li 159 Dec 20, 2022
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

2.3k Jan 09, 2023
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
Western-3DSlicer-Modules - Point-Set Registrations for Ultrasound Probe Calibrations

Point-Set Registrations for Ultrasound Probe Calibrations -Undergraduate Thesis-

Matteo Tanzi 0 May 04, 2022
Charsiu: A transformer-based phonetic aligner

Charsiu: A transformer-based phonetic aligner [arXiv] Note. This is a preview version. The aligner is under active development. New functions, new lan

jzhu 166 Dec 09, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Implementation of Squeezenet in pytorch, pretrained models on Cifar 10 data to come

Pytorch Squeeznet Pytorch implementation of Squeezenet model as described in https://arxiv.org/abs/1602.07360 on cifar-10 Data. The definition of Sque

gaurav pathak 86 Oct 28, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
An implementation of MobileFormer

MobileFormer An implementation of MobileFormer proposed by Yinpeng Chen, Xiyang Dai et al. Including [1] Mobile-Former proposed in:

slwang9353 62 Dec 28, 2022
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022