Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas.

Overview

codecov Supported versions Supported versions Supported versions CircleCI Build Status

skoot

Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas. Its objective is to expedite data munging and pre-processing tasks that can tend to take up so much of data science practitioners' time. See the documentation for more info.

Note that skoot is the preferred alternative to the now deprecated skutil library

Two minutes to model-readiness

Real world data is nasty. Most data scientists spend the majority of their time tackling data cleansing tasks. With skoot, we can automate away so much of the bespoke hacking solutions that consume data scientists' time.

In this example, we'll examine a common dataset (the adult dataset from the UCI machine learning repo) that requires significant pre-processing.

from skoot.datasets import load_adult_df
from skoot.feature_selection import FeatureFilter
from skoot.decomposition import SelectivePCA
from skoot.preprocessing import DummyEncoder
from skoot.utils.dataframe import get_numeric_columns
from skoot.utils.dataframe import get_categorical_columns
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

# load the dataset with the skoot-native loader & split it
adult = load_adult_df(tgt_name="target")
y = adult.pop("target")
X_train, X_test, y_train, y_test = train_test_split(
    adult, y, random_state=42, test_size=0.2)
    
# get numeric and categorical feature names
num_cols = get_numeric_columns(X_train).columns
obj_cols = get_categorical_columns(X_train).columns

# remove the education-num from the num_cols since we're going to remove it
num_cols = num_cols[~(num_cols == "education-num")]
    
# build a pipeline
pipe = Pipeline([
    # drop out the ordinal level that's otherwise equal to "education"
    ("dropper", FeatureFilter(cols=["education-num"])),
    
    # decompose the numeric features with PCA
    ("pca", SelectivePCA(cols=num_cols)),
    
    # dummy encode the categorical features
    ("dummy", DummyEncoder(cols=obj_cols, handle_unknown="ignore")),
    
    # and a simple classifier class
    ("clf", RandomForestClassifier(n_estimators=100, random_state=42))
])

pipe.fit(X_train, y_train)

# produce predictions
preds = pipe.predict(X_test)
print("Test accuracy: %.3f" % accuracy_score(y_test, preds))

For more tutorials, check out the documentation.

Comments
  • Windows: pip install not working

    Windows: pip install not working

    Hi, I can't install skoot neither via pip, nor anaconda.

    > pip install skoot
    Collecting skoot
      Could not find a version that satisfies the requirement skoot (from versions: )
    No matching distribution found for skoot
    

    Any ideas why that might be? Thank you!

    opened by r0f1 2
  • Bump django from 1.11 to 1.11.29 in /build_tools/doc

    Bump django from 1.11 to 1.11.29 in /build_tools/doc

    Bumps django from 1.11 to 1.11.29.

    Commits
    • f1e3017 [1.11.x] Bumped version for 1.11.29 release.
    • 02d97f3 [1.11.x] Fixed CVE-2020-9402 -- Properly escaped tolerance parameter in GIS f...
    • e643833 [1.11.x] Pinned PyYAML < 5.3 in test requirements.
    • d0e3eb8 [1.11.x] Added CVE-2020-7471 to security archive.
    • 9a62ed5 [1.11.x] Post-release version bump.
    • e09f09b [1.11.x] Bumped version for 1.11.28 release.
    • 001b063 [1.11.x] Fixed CVE-2020-7471 -- Properly escaped StringAgg(delimiter) parameter.
    • 7fd1ca3 [1.11.x] Fixed timezones tests for PyYAML 5.3+.
    • 121115d [1.11.x] Added CVE-2019-19844 to the security archive.
    • 2c4fb9a [1.11.x] Post-release version bump.
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump django from 1.11 to 1.11.28 in /build_tools/doc

    Bump django from 1.11 to 1.11.28 in /build_tools/doc

    Bumps django from 1.11 to 1.11.28.

    Commits
    • e09f09b [1.11.x] Bumped version for 1.11.28 release.
    • 001b063 [1.11.x] Fixed CVE-2020-7471 -- Properly escaped StringAgg(delimiter) parameter.
    • 7fd1ca3 [1.11.x] Fixed timezones tests for PyYAML 5.3+.
    • 121115d [1.11.x] Added CVE-2019-19844 to the security archive.
    • 2c4fb9a [1.11.x] Post-release version bump.
    • 358973a [1.11.x] Bumped version for 1.11.27 release.
    • f4cff43 [1.11.x] Fixed CVE-2019-19844 -- Used verified user email for password reset ...
    • a235574 [1.11.x] Refs #31073 -- Added release notes for 02eff7ef60466da108b1a33f1e4dc...
    • e8fdf00 [1.11.x] Fixed #31073 -- Prevented CheckboxInput.get_context() from mutating ...
    • 4f15016 [1.11.x] Post-release version bump.
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump django from 1.11 to 1.11.23 in /build_tools/doc

    Bump django from 1.11 to 1.11.23 in /build_tools/doc

    Bumps django from 1.11 to 1.11.23.

    Commits
    • 9748977 [1.11.x] Bumped version for 1.11.23 release.
    • 869b34e [1.11.x] Fixed CVE-2019-14235 -- Fixed potential memory exhaustion in django....
    • ed682a2 [1.11.x] Fixed CVE-2019-14234 -- Protected JSONField/HStoreField key and inde...
    • 52479ac [1.11.x] Fixed CVE-2019-14233 -- Prevented excessive HTMLParser recursion in ...
    • 42a66e9 [1.11.X] Fixed CVE-2019-14232 -- Adjusted regex to avoid backtracking issues ...
    • 693046e [1.11.x] Added stub release notes for security releases.
    • 6d054b5 [1.11.x] Added CVE-2019-12781 to the security release archive.
    • 7c849b9 [1.11.x] Post-release version bump.
    • 480380c [1.11.x] Bumped version for 1.11.22 release.
    • 32124fc [1.11.x] Fixed CVE-2019-12781 -- Made HttpRequest always trust SECURE_PROXY_S...
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot ignore this [patch|minor|major] version will close this PR and stop Dependabot creating any more for this minor/major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Wrapped classes still reference sklearn user-guide

    Wrapped classes still reference sklearn user-guide

    The "See Also" section of wrapped sklearn estimators still references sklearn user_guide refs. We need to monkey patch "Selective" (or whatever prefix we are using) in front of them so they link in our documentation.

    bug 
    opened by tgsmith61591 1
  • Bump django from 1.11 to 2.2.24 in /build_tools/doc

    Bump django from 1.11 to 2.2.24 in /build_tools/doc

    Bumps django from 1.11 to 2.2.24.

    Commits
    • 2da029d [2.2.x] Bumped version for 2.2.24 release.
    • f27c38a [2.2.x] Fixed CVE-2021-33571 -- Prevented leading zeros in IPv4 addresses.
    • 053cc95 [2.2.x] Fixed CVE-2021-33203 -- Fixed potential path-traversal via admindocs'...
    • 6229d87 [2.2.x] Confirmed release date for Django 2.2.24.
    • f163ad5 [2.2.x] Added stub release notes and date for Django 2.2.24.
    • bed1755 [2.2.x] Changed IRC references to Libera.Chat.
    • 63f0d7a [2.2.x] Refs #32718 -- Fixed file_storage.test_generate_filename and model_fi...
    • 5fe4970 [2.2.x] Post-release version bump.
    • 61f814f [2.2.x] Bumped version for 2.2.23 release.
    • b8ecb06 [2.2.x] Fixed #32718 -- Relaxed file name validation in FileField.
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • scipy._lib_version not found when building package

    scipy._lib_version not found when building package

    problem: error saying scipy._lib_version is missing when building skoot

    cause: scipy._lib_version was removed in scipy 1.5.0 --> https://github.com/scipy/scipy/pull/11290 (downgrading to scipy 1.4.0 helps)

    Thanks!

    opened by AgroSimi 0
  • pip install Skoot on Mac keeps failing with ERROR: Could not find a version that satisfies the requirement skoot (from versions: none).

    pip install Skoot on Mac keeps failing with ERROR: Could not find a version that satisfies the requirement skoot (from versions: none).

    Description

    pip install Skoot on Mac keeps failing with ERROR: Could not find a version that satisfies the requirement skoot (from versions: none) ERROR: No matching distribution found for skoot

    Steps/Code to Reproduce

    pip install skoot using python version : Python 2.7.17 using pip version : pip 19.3.1

    Expected Results

    No errors thrown, successful installation of Skoot

    Actual Results

    ERROR: Could not find a version that satisfies the requirement skoot (from versions: none) ERROR: No matching distribution found for skoot

    Versions

    platform - Darwin-19.2.0-x86_64-i386-64bit sys - ('Python', '2.7.17 (default, Oct 24 2019, 12:57:47) \n[GCC 4.2.1 Compatible Apple LLVM 11.0.0 (clang-1100.0.33.8)]') Skoot -( not able to install ) numpy -("NumPy", numpy.version) scipy - ('SciPy', '1.2.3') sklearn - scikit-learn->sklearn (1.16.6)

    opened by lakshmikrish-97 8
  • [MRG] Mac builds

    [MRG] Mac builds

    This PR adds builds for mac. Currently, it does not deploy to PyPI. We still need the deploy-vars group on ADO. Since we decided to just do mac + Linux for now, this branched off of add-azure... We can use that branch to play around with Windows, or create a new one

    opened by aaronreidsmith 1
  • Package Roadmap

    Package Roadmap

    Is skoot still an active project? Or is there a successor to this concept? Looking to build something similar for my specific workflow, but maybe it would be mutually beneficial to contribute to this project.

    opened by MattConflitti 2
  • String fields with typos

    String fields with typos

    Description

    TODO: Create a transformer that can map values in text fields to known "good" values given Levenstein distance or some other method.

    enhancement 
    opened by tgsmith61591 0
Releases(0.20.0)
Owner
Taylor G Smith
Data scientist, ML engineer and all-around hacker. Java was once my first love, but I've long since converted to the cult of Python.
Taylor G Smith
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021
Machine Learning from Scratch

Machine Learning from Scratch Author: Shengxuan Wang From: Oregon State University Content: Building Machine Learning model from Scratch, without usin

ShawnWang 0 Jul 05, 2022
Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Thoughtworks 318 Jan 02, 2023
Machine Learning Course with Python:

A Machine Learning Course with Python Table of Contents Download Free Deep Learning Resource Guide Slack Group Introduction Motivation Machine Learnin

Instill AI 6.9k Jan 03, 2023
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just

wenqi 2 Jun 26, 2022
A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al.

pyUpSet A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al. Contents Purpose How to install How it work

288 Jan 04, 2023
Optimal Randomized Canonical Correlation Analysis

ORCCA Optimal Randomized Canonical Correlation Analysis This project is for the python version of ORCCA algorithm. It depends on Numpy for matrix calc

Yinsong Wang 1 Nov 21, 2021
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.7k Jan 04, 2023
Predicting job salaries from ads - a Kaggle competition

Predicting job salaries from ads - a Kaggle competition

Zygmunt Zając 57 Oct 23, 2020
A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Demand-Forecasting Business Problem A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Ayşe Nur Türkaslan 3 Mar 06, 2022
We have a dataset of user performances. The project is to develop a machine learning model that will predict the salaries of baseball players.

Salary-Prediction-with-Machine-Learning 1. Business Problem Can a machine learning project be implemented to estimate the salaries of baseball players

Ayşe Nur Türkaslan 9 Oct 14, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Machine learning algorithms implementation

Machine learning algorithms implementation This repository consisits of implementation of various machine learning algorithms. The algorithms implemen

Karun Dawadi 1 Jan 03, 2022
Practical Time-Series Analysis, published by Packt

Practical Time-Series Analysis This is the code repository for Practical Time-Series Analysis, published by Packt. It contains all the supporting proj

Packt 325 Dec 23, 2022
whylogs: A Data and Machine Learning Logging Standard

whylogs: A Data and Machine Learning Logging Standard whylogs is an open source standard for data and ML logging whylogs logging agent is the easiest

WhyLabs 2k Jan 06, 2023
A Software Framework for Neuromorphic Computing

A Software Framework for Neuromorphic Computing

Lava 338 Dec 26, 2022
Customers Segmentation with RFM Scores and K-means

Customer Segmentation with RFM Scores and K-means RFM Segmentation table: K-Means Clustering: Business Problem Rule-based customer segmentation machin

5 Aug 10, 2022
A Time Series Library for Apache Spark

Flint: A Time Series Library for Apache Spark The ability to analyze time series data at scale is critical for the success of finance and IoT applicat

Two Sigma 970 Jan 04, 2023
MasTrade is a trading bot in baselines3,pytorch,gym

mastrade MasTrade is a trading bot in baselines3,pytorch,gym idea we have for example 1 btc and we buy a crypto with it with market option to trade in

Masoud Azizi 18 May 24, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion is a Python library for time series intelligence. It provides an end-to-end machine learning framework that includes loading and transforming data, building and training models, post-processi

Salesforce 2.8k Jan 05, 2023