Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale.

Overview

Model Search

header

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model architecture for their classification problems (i.e., DNNs with different types of layers).

The library enables you to:

  • Run many AutoML algorithms out of the box on your data - including automatically searching for the right model architecture, the right ensemble of models and the best distilled models.

  • Compare many different models that are found during the search.

  • Create you own search space to customize the types of layers in your neural networks.

The technical description of the capabilities of this framework are found in InterSpeech paper.

While this framework can potentially be used for regression problems, the current version supports classification problems only. Let's start by looking at some classic classification problems and see how the framework can automatically find competitive model architectures.

Getting Started

Let us start with the simplest case. You have a csv file where the features are numbers and you would like to run let AutoML find the best model architecture for you.

Below is a code snippet for doing so:

import model_search
from model_search import constants
from model_search import single_trainer
from model_search.data import csv_data

trainer = single_trainer.SingleTrainer(
    data=csv_data.Provider(
        label_index=0,
        logits_dimension=2,
        record_defaults=[0, 0, 0, 0],
        filename="model_search/data/testdata/csv_random_data.csv"),
    spec=constants.DEFAULT_DNN)

trainer.try_models(
    number_models=200,
    train_steps=1000,
    eval_steps=100,
    root_dir="/tmp/run_example",
    batch_size=32,
    experiment_name="example",
    experiment_owner="model_search_user")

The above code will try 200 different models - all binary classification models, as the logits_dimension is 2. The root directory will have a subdirectory of all models, all of which will be already evaluated. You can open the directory with tensorboard and see all the models with the evaluation metrics.

The search will be performed according to the default specification. That can be found in: model_search/configs/dnn_config.pbtxt.

For more details about the fields and if you want to create your own specification, you can look at: model_search/proto/phoenix_spec.proto.

Image data example

Below is an example of binary classification for images.

import model_search
from model_search import constants
from model_search import single_trainer
from model_search.data import image_data

trainer = single_trainer.SingleTrainer(
    data=image_data.Provider(
        input_dir="model_search/data/testdata/images"
        image_height=100,
        image_width=100,
        eval_fraction=0.2),
    spec=constants.DEFAULT_CNN)

trainer.try_models(
    number_models=200,
    train_steps=1000,
    eval_steps=100,
    root_dir="/tmp/run_example",
    batch_size=32,
    experiment_name="example",
    experiment_owner="model_search_user")

The api above follows the same input fields as tf.keras.preprocessing.image_dataset_from_directory.

The search will be performed according to the default specification. That can be found in: model_search/configs/cnn_config.pbtxt.

Now, what if you don't have a csv with the features or images? The next section shows how to run without a csv.

Non-csv, Non-image data

To run with non-csv data, you will have to implement a class inherited from the abstract class model_search.data.Provider. This enables us to define our own input_fn and hence customize the feature columns and the task (i.e., the number of classes in the classification task).

int: """Returns the number of classes. Logits dim for regression.""" def get_feature_columns( self ) -> List[Union[feature_column._FeatureColumn, feature_column_v2.FeatureColumn]]: """Returns a `List` of feature columns.""" ">
class Provider(object, metaclass=abc.ABCMeta):
  """A data provider interface.

  The Provider abstract class that defines three function for Estimator related
  training that return the following:
    * An input function for training and test input functions that return
      features and label batch tensors. It is responsible for parsing the
      dataset and buffering data.
    * The feature_columns for this dataset.
    * problem statement.
  """

  def get_input_fn(self, hparams, mode, batch_size: int):
    """Returns an `input_fn` for train and evaluation.

    Args:
      hparams: tf.HParams for the experiment.
      mode: Defines whether this is training or evaluation. See
        `estimator.ModeKeys`.
      batch_size: the batch size for training and eval.

    Returns:
      Returns an `input_fn` for train or evaluation.
    """

  def get_serving_input_fn(self, hparams):
    """Returns an `input_fn` for serving in an exported SavedModel.

    Args:
      hparams: tf.HParams for the experiment.

    Returns:
      Returns an `input_fn` that takes no arguments and returns a
        `ServingInputReceiver`.
    """

  @abc.abstractmethod
  def number_of_classes(self) -> int:
    """Returns the number of classes. Logits dim for regression."""

  def get_feature_columns(
      self
  ) -> List[Union[feature_column._FeatureColumn,
                  feature_column_v2.FeatureColumn]]:
    """Returns a `List` of feature columns."""

An example of an implementation can be found in model_search/data/csv_data.py.

Once you have this class, you can pass it to model_search.single_trainer.SingleTrainer and your single trainer can now read your data.

Adding your models and architectures to a search space

You can use our platform to test your own existing models.

Our system searches over what we call blocks. We have created an abstract API for an object that resembles a layer in a DNN. All that needs to be implemented for this class is two functions:

class Block(object, metaclass=abc.ABCMeta):
  """Block api for creating a new block."""

  @abc.abstractmethod
  def build(self, input_tensors, is_training, lengths=None):
    """Builds a block for phoenix.

    Args:
      input_tensors: A list of input tensors.
      is_training: Whether we are training. Used for regularization.
      lengths: The lengths of the input sequences in the batch.

    Returns:
      output_tensors: A list of the output tensors.
    """

  @abc.abstractproperty
  def is_input_order_important(self):
    """Is the order of the entries in the input tensor important.

    Returns:
      A bool specifying if the order of the entries in the input is important.
      Examples where the order is important: Input for a cnn layer.
      (e.g., pixels an image). Examples when the order is not important:
      Input for a dense layer.
    """

Once you have implemented your own blocks (i.e., layers), you need to register them with a decorator. Example:

@register_block(
    lookup_name='AVERAGE_POOL_2X2', init_args={'kernel_size': 2}, enum_id=8)
@register_block(
    lookup_name='AVERAGE_POOL_4X4', init_args={'kernel_size': 4}, enum_id=9)
class AveragePoolBlock(Block):
  """Average Pooling layer."""

  def __init__(self, kernel_size=2):
    self._kernel_size = kernel_size

  def build(self, input_tensors, is_training, lengths=None):

(All code above can be found in model_search/blocks.py). Once registered, you can tell the system to search over these blocks by supplying them in blocks_to_use in PhoenixSpec in model_search/proto/phoenix_spec.proto. Namely, if you look at the default specification for dnn found in model_search/configs/dnn_config.pbtxt, you can change the repeated field blocks_to_use and add you own registered blocks.

Note: Our system stacks blocks one on top of each other to create tower architectures that are then going to be ensembled. You can set the minimal and maximal depth allowed in the config to 1 which will change the system to search over which block perform best for the problem - I.e., your blocks can be now an implementation of full classifiers and the system will choose the best one.

Creating a training stand alone binary without writing a main

Now, let's assume you have the data class, but you don't want to write a main function to run it.

We created a simple way to create a main that will just train a dataset and is configurable via flags.

To create it, you need to follow two steps:

  1. You need to register your data provider.

  2. You need to call a help function to create a build rule.

Example: Suppose you have a provider, then you need to register it via a decorator we define it as follows:

@data.register_provider(lookup_name='csv_data_provider', init_args={})
class Provider(data.Provider):
  """A csv data provider."""

  def __init__(self):

The above code can be found in model_search/data/csv_data_for_binary.py.

Next, once you have such library (data provider defined in a .py file and registered), you can supply this library to a help build function an it will create a binary rule as follows:

model_search_oss_binary(
    name = "csv_data_binary",
    dataset_dep = ":csv_data_for_binary",
)

You can also add a test automatically to test integration of your provider with the system as follows:

model_search_oss_test(
    name = "csv_data_for_binary_test",
    dataset_dep = ":csv_data_for_binary",
    problem_type = "dnn",
    extra_args = [
        "--filename=$${TEST_SRCDIR}/model_search/data/testdata/csv_random_data.csv",
    ],
    test_data = [
        "//model_search/data/testdata:csv_random_data",
    ],
)

The above function will create a runable binary. The snippets are taken from the following file: model_search/data/BUILD. The binary is configurable by the flags in model_search/oss_trainer_lib.py.

Distributed Runs

Our system can run a distributed search - I.e., run many search trainer in parallel.

How does it work?

You need to run your binary on multiple machines. Additionally, you need to make one change to configure the bookkeeping of the search.

On a single machine, the bookkeeping is done via a file. For a distributed system however, we need a database.

In order to point our system to the database, you need to set the flags in the file:

model_search/metadata/ml_metadata_db.py

to point to your database.

Once you have done so, the binaries created from the previous section will connect to this database and an async search will begin.

Cloud AutoML

Want to try higher performance AutoML without writing code? Try: https://cloud.google.com/automl-tables

Owner
AriesTriputranto
Name: AriesTriputranto 04/12/1981 Address : R.M.Harsono south Jakarta , zoo Ragunan Indonesia
AriesTriputranto
GroundSeg Clustering Optimized Kdtree

ground seg and clustering based on kitti velodyne data, and a additional optimized kdtree for knn and radius nn search

2 Dec 02, 2021
Machine Learning e Data Science com Python

Machine Learning e Data Science com Python Arquivos do curso de Data Science e Machine Learning com Python na Udemy, cliqe aqui para acessá-lo. O prin

Renan Barbosa 1 Jan 27, 2022
BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python

BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python. Some of the algorithms included are mor

Jared M. Smith 40 Aug 26, 2022
Titanic Traveller Survivability Prediction

The aim of the mini project is predict whether or not a passenger survived based on attributes such as their age, sex, passenger class, where they embarked and more.

John Phillip 0 Jan 20, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Facebook Research 29 Dec 02, 2022
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.7k Jan 04, 2023
Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.

Self Organising Map for Clustering of Atomistic Samples - V2 Description Self Organising Map (also known as Kohonen Network) implemented in Python for

Franco Aquistapace 0 Nov 16, 2021
Open source time series library for Python

PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array

Ross Taylor 2k Jan 02, 2023
ML Kaggle Titanic Problem using LogisticRegrission

-ML-Kaggle-Titanic-Problem-using-LogisticRegrission here you will find the solution for the titanic problem on kaggle with comments and step by step c

Mahmoud Nasser Abdulhamed 3 Oct 23, 2022
scikit-multimodallearn is a Python package implementing algorithms multimodal data.

scikit-multimodallearn is a Python package implementing algorithms multimodal data. It is compatible with scikit-learn, a popul

12 Jun 29, 2022
A Multipurpose Library for Synthetic Time Series Generation in Python

TimeSynth Multipurpose Library for Synthetic Time Series Please cite as: J. R. Maat, A. Malali, and P. Protopapas, “TimeSynth: A Multipurpose Library

278 Dec 26, 2022
Primitives for machine learning and data science.

An Open Source Project from the Data to AI Lab, at MIT MLPrimitives Pipelines and primitives for machine learning and data science. Documentation: htt

MLBazaar 65 Dec 29, 2022
A Python step-by-step primer for Machine Learning and Optimization

early-ML Presentation General Machine Learning tutorials A Python step-by-step primer for Machine Learning and Optimization This github repository gat

Dimitri Bettebghor 8 Dec 01, 2022
决策树分类与回归模型的实现和可视化

DecisionTree 决策树分类与回归模型,以及可视化 DecisionTree ID3 C4.5 CART 分类 回归 决策树绘制 分类树 回归树 调参 剪枝 ID3 ID3决策树是最朴素的决策树分类器: 无剪枝 只支持离散属性 采用信息增益准则 在data.py中,我们记录了一个小的西瓜数据

Welt Xing 10 Oct 22, 2022
Python module for data science and machine learning users.

dsnk-distributions package dsnk distribution is a Python module for data science and machine learning that was created with the goal of reducing calcu

Emmanuel ASIFIWE 1 Nov 23, 2021
As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Crate will be the hub of various ML projects which will be the resources for the ML enthusiasts! Open Source Program: SWOC 2021 and JWOC 2022.

Machine Learning Loot Crate 💻 🧰 🔴 Welcome contributors! As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Cra

Abhishek Sharma 89 Dec 28, 2022
A python library for Bayesian time series modeling

PyDLM Welcome to pydlm, a flexible time series modeling library for python. This library is based on the Bayesian dynamic linear model (Harrison and W

Sam 438 Dec 17, 2022
Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning

Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, define-by-run style user API.

7.4k Jan 04, 2023
Simple structured learning framework for python

PyStruct PyStruct aims at being an easy-to-use structured learning and prediction library. Currently it implements only max-margin methods and a perce

pystruct 666 Jan 03, 2023
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.

Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear

23.3k Dec 31, 2022