Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

Overview

HierarchicyBandit

Introduction

This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations
The reference codes for HCB and pHCB, which are based on three different base bandit algorithms.

  1. LinUCB from A contextual-bandit approach to personalized news article recommendation
  2. epsilon-Greedy [This strategy, with random exploration on an epsilon fraction of the traffic and greedy exploitation on the rest]
  3. Thompson Sampling from Thompson Sampling for Contextual Bandits with Linear Payoffs

Files in the folder

  • data/
    • MIND/ and TaoBao/
      • item_info.pkl: processed item file, including item id, item feature and embeddings for simulator;
      • user_info.pkl: processed user file, including user id, and embeddings for simulator;
      • item_info_ts.pkl: processed item file for Thompson sampling;
  • algs/: implementations of PCB and pHCB based on LinUCB.
  • algsE/: implementations of PCB and pHCB based on epsilon-Greedy.
  • algsTS/: implementations of PCB and pHCB based on Thompson Sampling.

Note

  1. Before testing the algorithms, you should modify the settings in config.py.
  2. For thompson sampling, we provide another 16 dimensonal feature vectors to run the experiments, since it can be faster . The original feature vectors are also work with the algorithms.
  3. the user_info.pkl and item_info.pkl is formated as dictionary type.
  4. The implementation of ConUCB is released at ConUCB. HMAB and ICTRUCB are specical case of CB-Category and CB-Leaf.

Usage:

Download the HierarchicyBandit.zip and unzip. You will get five folders, they are algs/, algsE/, algsTS/, data/, and logger/.

Parameters:
The config.py file contains:

dataset: is the dataset used in the experiment, it can be 'MIND' or 'TaoBao';  
T: the number of rounds of each bandit algorithm;  
k: the number of items recommended to user at each round, default is 1;  
activate_num: the hyper-papamter p for pHCB;  
activate_prob: the hyper-papamter q for pHCB;  
epsilon: the epsilon value for greedy-based algorithms;  
new_tree_file: the tree file name;  
noise_scale: the standard deviation of environmental noise;  
keep_prob: sample ratio; default is 1.0, which means testing all users.
linucb_para: the hyper-parameters for linucb algorithm;
ts_para: the hyper-parameters for thompson sampling algorithm;
poolsize: the size of candidate pool;
random_choice: whether random choice an item to user;   

Environment: python 3.6 with Anaconda To run the bandit codes based on LinUCB:

$ cd algs
$ python simulator_multi_process.py

To run the bandit codes based on epsilon-Greedy:

$ cd algsE
$ python simulator_multi_process.py

To run the bandit codes based on Thompson sampling:

$ cd algsTS
$ python simulator_multi_process.py
Owner
yu song
I am a master at Huazhong University of Science and Technology(HUST)
yu song
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

Wenqi Zhao 87 Dec 27, 2022
This repository contains the exercises and its solution contained in the book "An Introduction to Statistical Learning" in python.

An-Introduction-to-Statistical-Learning This repository contains the exercises and its solution contained in the book An Introduction to Statistical L

2.1k Jan 02, 2023
Codes of the paper Deformable Butterfly: A Highly Structured and Sparse Linear Transform.

Deformable Butterfly: A Highly Structured and Sparse Linear Transform DeBut Advantages DeBut generalizes the square power of two butterfly factor matr

Rui LIN 8 Jun 10, 2022
An efficient framework for reinforcement learning.

rl: An efficient framework for reinforcement learning Requirements Introduction PPO Test Requirements name version Python =3.7 numpy =1.19 torch =1

16 Nov 30, 2022
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
A PyTorch implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Caiyong Wang 14 Sep 20, 2022
Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

Kai Ninomiya 5 Jul 18, 2022
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

75 Nov 24, 2022
A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

this is a simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

crispengari 5 Dec 09, 2021
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques Installation PyPI pip install colossalai Install

HPC-AI Tech 7.1k Jan 03, 2023
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese

Tsinghua Machine Learning Group 377 Dec 20, 2022
Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Code Artifacts Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driv

Andrea Stocco 2 Aug 24, 2022
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
Neural Logic Inductive Learning

Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn

36 Nov 28, 2022
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022