Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

Overview

HierarchicyBandit

Introduction

This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations
The reference codes for HCB and pHCB, which are based on three different base bandit algorithms.

  1. LinUCB from A contextual-bandit approach to personalized news article recommendation
  2. epsilon-Greedy [This strategy, with random exploration on an epsilon fraction of the traffic and greedy exploitation on the rest]
  3. Thompson Sampling from Thompson Sampling for Contextual Bandits with Linear Payoffs

Files in the folder

  • data/
    • MIND/ and TaoBao/
      • item_info.pkl: processed item file, including item id, item feature and embeddings for simulator;
      • user_info.pkl: processed user file, including user id, and embeddings for simulator;
      • item_info_ts.pkl: processed item file for Thompson sampling;
  • algs/: implementations of PCB and pHCB based on LinUCB.
  • algsE/: implementations of PCB and pHCB based on epsilon-Greedy.
  • algsTS/: implementations of PCB and pHCB based on Thompson Sampling.

Note

  1. Before testing the algorithms, you should modify the settings in config.py.
  2. For thompson sampling, we provide another 16 dimensonal feature vectors to run the experiments, since it can be faster . The original feature vectors are also work with the algorithms.
  3. the user_info.pkl and item_info.pkl is formated as dictionary type.
  4. The implementation of ConUCB is released at ConUCB. HMAB and ICTRUCB are specical case of CB-Category and CB-Leaf.

Usage:

Download the HierarchicyBandit.zip and unzip. You will get five folders, they are algs/, algsE/, algsTS/, data/, and logger/.

Parameters:
The config.py file contains:

dataset: is the dataset used in the experiment, it can be 'MIND' or 'TaoBao';  
T: the number of rounds of each bandit algorithm;  
k: the number of items recommended to user at each round, default is 1;  
activate_num: the hyper-papamter p for pHCB;  
activate_prob: the hyper-papamter q for pHCB;  
epsilon: the epsilon value for greedy-based algorithms;  
new_tree_file: the tree file name;  
noise_scale: the standard deviation of environmental noise;  
keep_prob: sample ratio; default is 1.0, which means testing all users.
linucb_para: the hyper-parameters for linucb algorithm;
ts_para: the hyper-parameters for thompson sampling algorithm;
poolsize: the size of candidate pool;
random_choice: whether random choice an item to user;   

Environment: python 3.6 with Anaconda To run the bandit codes based on LinUCB:

$ cd algs
$ python simulator_multi_process.py

To run the bandit codes based on epsilon-Greedy:

$ cd algsE
$ python simulator_multi_process.py

To run the bandit codes based on Thompson sampling:

$ cd algsTS
$ python simulator_multi_process.py
Owner
yu song
I am a master at Huazhong University of Science and Technology(HUST)
yu song
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021
Multi-Stage Progressive Image Restoration

Multi-Stage Progressive Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Sh

Syed Waqas Zamir 859 Dec 22, 2022
Bravia core script for python

Bravia-Core-Script You need to have a mandatory account If this L3 does not work, try another L3. enjoy

5 Dec 26, 2021
functorch is a prototype of JAX-like composable function transforms for PyTorch.

functorch is a prototype of JAX-like composable function transforms for PyTorch.

Facebook Research 1.2k Jan 09, 2023
BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis

Bilateral Denoising Diffusion Models (BDDMs) This is the official PyTorch implementation of the following paper: BDDM: BILATERAL DENOISING DIFFUSION M

172 Dec 23, 2022
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens

Lutz Roeder 21k Jan 06, 2023
Taming Transformers for High-Resolution Image Synthesis

Taming Transformers for High-Resolution Image Synthesis CVPR 2021 (Oral) Taming Transformers for High-Resolution Image Synthesis Patrick Esser*, Robin

CompVis Heidelberg 3.5k Jan 03, 2023
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Alan Bi 576 Dec 29, 2022
Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ryuichiro Hataya 50 Dec 05, 2022
Graduation Project

Gesture-Detection-and-Depth-Estimation This is my graduation project. (1) In this project, I use the YOLOv3 object detection model to detect gesture i

ChaosAT 1 Nov 23, 2021
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Deep Insight 13.2k Jan 06, 2023
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 04, 2023
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

万理 5 Jul 26, 2022
Pytorch ImageNet1k Loader with Bounding Boxes.

ImageNet 1K Bounding Boxes For some experiments, you might wanna pass only the background of imagenet images vs passing only the foreground. Here, I'v

Amin Ghiasi 11 Oct 15, 2022
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

22 Oct 21, 2022
This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

Théo Deprelle 123 Nov 11, 2022