sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

Overview

Introduction

sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

Documents

In English

https://sssegmentation.readthedocs.io/en/latest/

Supported

Supported Backbones

Supported Models

Supported Datasets

Citation

If you use this framework in your research, please cite this project.

@misc{ssseg2020,
    author = {Zhenchao Jin},
    title = {SSSegmentation: A general framework for strongly supervised semantic segmentation},
    year = {2020},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/SegmentationBLWX/sssegmentation}},
}

References

[1]. https://github.com/open-mmlab/mmcv
[2]. https://github.com/open-mmlab/mmsegmentation
Comments
  • Training on custom dataset with 4 channels

    Training on custom dataset with 4 channels

    Hi, I want to train my own dataset which has images in 4 channels - RGB images and IR(infrared) images. Could you help me out with that? How can i modify the codes of this repo to accommodate that extra channel?

    opened by cspearl 4
  • how to train with multi-gpu in one machine

    how to train with multi-gpu in one machine

    hi,i wanna train the model with 4 gpus in one machine however, your code 'distrain.sh' and 'train.py' can only train with distributed mode in multi-machine how can i modify the code ?

    opened by Kenneth-X 3
  • isnet:imagelevel.py

    isnet:imagelevel.py

    imagelevel.py : 47: feats_il = self.correlate_net(x, torch.cat([x_global, x], dim=1))

    isanet.py: 47:context = super(SelfAttentionBlock, self).forward(x, x)

    is there any problem? bug?

    opened by shujunyy123 3
  • How to modify parameters to use single card training?

    How to modify parameters to use single card training?

    How to modify parameters to use single card training?

    In addition to modifying the following in config:

    SEGMENTOR_CFG.update(distributed{'is_on':False})

    opened by kakamie 1
  • SWIN-B with DeepLabv3+ training on custom dataset

    SWIN-B with DeepLabv3+ training on custom dataset

    Hi, I am learning about Segmentation and want to try out the segmentation my custom data set. Could you please provide steps on how to use supported backbones with some particular architectures?

    If I want to use SWIN-B as my backbone on DeepLabV3+ using a custom dataset, what should be the commands and all. I could not find anything on the docs and on the github page. Could you please help.

    opened by deshwalmahesh 1
  • Is there should be 'continue'?

    Is there should be 'continue'?

    https://github.com/SegmentationBLWX/sssegmentation/blob/7a405b1a4949606deae067223ebd68cceec6b225/ssseg/modules/models/memorynet/memory.py#L176

    If there are more than one 'num_feats_per_cls' in the furture, 'break' will make this for loop only update the first memory_feature?

    opened by EricKani 1
  • 医学图像分割也很有意义,我想给你一些公开的医学图像数据集。哈哈哈哈

    医学图像分割也很有意义,我想给你一些公开的医学图像数据集。哈哈哈哈

    Hi @CharlesPikachu !UNet 也是大名鼎鼎的分割模型啊,它在医学图像分割领域是 SOTA,个人认为 Supported Models 列表里应该有名字,而且应该在 FCN 之后。哈哈哈 🥇

    虽然 PyTorch Hub 已经有预训练的 UNet 了,但我想要皮卡丘也有! 🛩️

    这里提供一些医学数据集给你参考:

    opened by S-HuaBomb 1
Releases(v1.0.0)
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
TensorFlow-based implementation of "Pyramid Scene Parsing Network".

PSPNet_tensorflow Important Code is fine for inference. However, the training code is just for reference and might be only used for fine-tuning. If yo

HsuanKung Yang 323 Dec 20, 2022
CT-Net: Channel Tensorization Network for Video Classification

[ICLR2021] CT-Net: Channel Tensorization Network for Video Classification @inproceedings{ li2021ctnet, title={{\{}CT{\}}-Net: Channel Tensorization Ne

33 Nov 15, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
Individual Treatment Effect Estimation

CAPE Individual Treatment Effect Estimation Run CAPE python train_causal.py --loop 10 -m cape_cau -d NI --i_t 1 Run a baseline model python train_cau

S. Deng 4 Sep 02, 2022
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 31, 2022
Weakly Supervised 3D Object Detection from Point Cloud with Only Image Level Annotation

SCCKTIM Weakly Supervised 3D Object Detection from Point Cloud with Only Image-Level Annotation Our code will be available soon. The class knowledge t

1 Nov 12, 2021
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im

Phil Wang 121 Dec 30, 2022
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
GAN Image Generator and Characterwise Image Recognizer with python

MODEL SUMMARY 모델의 구조는 크게 6단계로 나뉩니다. STEP 0: Input Image Predict 할 이미지를 모델에 입력합니다. STEP 1: Make Black and White Image STEP 1 은 입력받은 이미지의 글자를 흑색으로, 배경을

Juwan HAN 1 Feb 09, 2022
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery

A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery This repository is the official implementati

Aatif Jiwani 42 Dec 08, 2022
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022