sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

Overview

Introduction

sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

Documents

In English

https://sssegmentation.readthedocs.io/en/latest/

Supported

Supported Backbones

Supported Models

Supported Datasets

Citation

If you use this framework in your research, please cite this project.

@misc{ssseg2020,
    author = {Zhenchao Jin},
    title = {SSSegmentation: A general framework for strongly supervised semantic segmentation},
    year = {2020},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/SegmentationBLWX/sssegmentation}},
}

References

[1]. https://github.com/open-mmlab/mmcv
[2]. https://github.com/open-mmlab/mmsegmentation
Comments
  • Training on custom dataset with 4 channels

    Training on custom dataset with 4 channels

    Hi, I want to train my own dataset which has images in 4 channels - RGB images and IR(infrared) images. Could you help me out with that? How can i modify the codes of this repo to accommodate that extra channel?

    opened by cspearl 4
  • how to train with multi-gpu in one machine

    how to train with multi-gpu in one machine

    hi,i wanna train the model with 4 gpus in one machine however, your code 'distrain.sh' and 'train.py' can only train with distributed mode in multi-machine how can i modify the code ?

    opened by Kenneth-X 3
  • isnet:imagelevel.py

    isnet:imagelevel.py

    imagelevel.py : 47: feats_il = self.correlate_net(x, torch.cat([x_global, x], dim=1))

    isanet.py: 47:context = super(SelfAttentionBlock, self).forward(x, x)

    is there any problem? bug?

    opened by shujunyy123 3
  • How to modify parameters to use single card training?

    How to modify parameters to use single card training?

    How to modify parameters to use single card training?

    In addition to modifying the following in config:

    SEGMENTOR_CFG.update(distributed{'is_on':False})

    opened by kakamie 1
  • SWIN-B with DeepLabv3+ training on custom dataset

    SWIN-B with DeepLabv3+ training on custom dataset

    Hi, I am learning about Segmentation and want to try out the segmentation my custom data set. Could you please provide steps on how to use supported backbones with some particular architectures?

    If I want to use SWIN-B as my backbone on DeepLabV3+ using a custom dataset, what should be the commands and all. I could not find anything on the docs and on the github page. Could you please help.

    opened by deshwalmahesh 1
  • Is there should be 'continue'?

    Is there should be 'continue'?

    https://github.com/SegmentationBLWX/sssegmentation/blob/7a405b1a4949606deae067223ebd68cceec6b225/ssseg/modules/models/memorynet/memory.py#L176

    If there are more than one 'num_feats_per_cls' in the furture, 'break' will make this for loop only update the first memory_feature?

    opened by EricKani 1
  • 医学图像分割也很有意义,我想给你一些公开的医学图像数据集。哈哈哈哈

    医学图像分割也很有意义,我想给你一些公开的医学图像数据集。哈哈哈哈

    Hi @CharlesPikachu !UNet 也是大名鼎鼎的分割模型啊,它在医学图像分割领域是 SOTA,个人认为 Supported Models 列表里应该有名字,而且应该在 FCN 之后。哈哈哈 🥇

    虽然 PyTorch Hub 已经有预训练的 UNet 了,但我想要皮卡丘也有! 🛩️

    这里提供一些医学数据集给你参考:

    opened by S-HuaBomb 1
Releases(v1.0.0)
TakeInfoatNistforICS - Take Information in NIST NVD for ICS

Take Information in NIST NVD for ICS This project developed with Python. When yo

5 Sep 05, 2022
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Luna Yue Huang 41 Oct 29, 2022
Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Neural Magic Eye Preprint | Project Page | Colab Runtime Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Un

Zhengxia Zou 56 Jul 15, 2022
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"

PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi

Vitaliy Hramchenko 58 Dec 19, 2022
This is an easy python software which allows to sort images with faces by gender and after by age.

Gender-age Classifier This is an easy python software which allows to sort images with faces by gender and after by age. Usage First install Deepface

Claudio Ciccarone 6 Sep 17, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin Przewięźlikowski 8 Oct 09, 2022
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.

Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just

Pavel Yakubovskiy 4.2k Jan 09, 2023
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022