SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

Overview

SPRING

PWC

PWC

PWC

PWC

This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021.

With SPRING you can perform both state-of-the-art Text-to-AMR parsing and AMR-to-Text generation without many cumbersome external components. If you use the code, please reference this work in your paper:

@inproceedings{bevilacqua-etal-2021-one,
    title = {One {SPRING} to Rule Them Both: {S}ymmetric {AMR} Semantic Parsing and Generation without a Complex Pipeline},
    author = {Bevilacqua, Michele and Blloshmi, Rexhina and Navigli, Roberto},
    booktitle = {Proceedings of AAAI},
    year = {2021}
}

Pretrained Checkpoints

Here we release our best SPRING models which are based on the DFS linearization.

Text-to-AMR Parsing

AMR-to-Text Generation

If you need the checkpoints of other experiments in the paper, please send us an email.

Installation

cd spring
pip install -r requirements.txt
pip install -e .

The code only works with transformers < 3.0 because of a disrupting change in positional embeddings. The code works fine with torch 1.5. We recommend the usage of a new conda env.

Train

Modify config.yaml in configs. Instructions in comments within the file. Also see the appendix.

Text-to-AMR

python bin/train.py --config configs/config.yaml --direction amr

Results in runs/

AMR-to-Text

python bin/train.py --config configs/config.yaml --direction text

Results in runs/

Evaluate

Text-to-AMR

python bin/predict_amrs.py \
    --datasets <AMR-ROOT>/data/amrs/split/test/*.txt \
    --gold-path data/tmp/amr2.0/gold.amr.txt \
    --pred-path data/tmp/amr2.0/pred.amr.txt \
    --checkpoint runs/<checkpoint>.pt \
    --beam-size 5 \
    --batch-size 500 \
    --device cuda \
    --penman-linearization --use-pointer-tokens

gold.amr.txt and pred.amr.txt will contain, respectively, the concatenated gold and the predictions.

To reproduce our paper's results, you will also need need to run the BLINK entity linking system on the prediction file (data/tmp/amr2.0/pred.amr.txt in the previous code snippet). To do so, you will need to install BLINK, and download their models:

git clone https://github.com/facebookresearch/BLINK.git
cd BLINK
pip install -r requirements.txt
sh download_blink_models.sh
cd models
wget http://dl.fbaipublicfiles.com/BLINK//faiss_flat_index.pkl
cd ../..

Then, you will be able to launch the blinkify.py script:

python bin/blinkify.py \
    --datasets data/tmp/amr2.0/pred.amr.txt \
    --out data/tmp/amr2.0/pred.amr.blinkified.txt \
    --device cuda \
    --blink-models-dir BLINK/models

To have comparable Smatch scores you will also need to use the scripts available at https://github.com/mdtux89/amr-evaluation, which provide results that are around ~0.3 Smatch points lower than those returned by bin/predict_amrs.py.

AMR-to-Text

python bin/predict_sentences.py \
    --datasets <AMR-ROOT>/data/amrs/split/test/*.txt \
    --gold-path data/tmp/amr2.0/gold.text.txt \
    --pred-path data/tmp/amr2.0/pred.text.txt \
    --checkpoint runs/<checkpoint>.pt \
    --beam-size 5 \
    --batch-size 500 \
    --device cuda \
    --penman-linearization --use-pointer-tokens

gold.text.txt and pred.text.txt will contain, respectively, the concatenated gold and the predictions. For BLEU, chrF++, and Meteor in order to be comparable you will need to tokenize both gold and predictions using JAMR tokenizer. To compute BLEU and chrF++, please use bin/eval_bleu.py. For METEOR, use https://www.cs.cmu.edu/~alavie/METEOR/ . For BLEURT don't use tokenization and run the eval with https://github.com/google-research/bleurt. Also see the appendix.

Linearizations

The previously shown commands assume the use of the DFS-based linearization. To use BFS or PENMAN decomment the relevant lines in configs/config.yaml (for training). As for the evaluation scripts, substitute the --penman-linearization --use-pointer-tokens line with --use-pointer-tokens for BFS or with --penman-linearization for PENMAN.

License

This project is released under the CC-BY-NC-SA 4.0 license (see LICENSE). If you use SPRING, please put a link to this repo.

Acknowledgements

The authors gratefully acknowledge the support of the ERC Consolidator Grant MOUSSE No. 726487 and the ELEXIS project No. 731015 under the European Union’s Horizon 2020 research and innovation programme.

This work was supported in part by the MIUR under the grant "Dipartimenti di eccellenza 2018-2022" of the Department of Computer Science of the Sapienza University of Rome.

Owner
Sapienza NLP group
The NLP group at the Sapienza University of Rome
Sapienza NLP group
Pytorch implementation of BRECQ, ICLR 2021

BRECQ Pytorch implementation of BRECQ, ICLR 2021 @inproceedings{ li&gong2021brecq, title={BRECQ: Pushing the Limit of Post-Training Quantization by Bl

Yuhang Li 148 Dec 28, 2022
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
A simple interface for editing natural photos with generative neural networks.

Neural Photo Editor A simple interface for editing natural photos with generative neural networks. This repository contains code for the paper "Neural

Andy Brock 2.1k Dec 29, 2022
Heterogeneous Deep Graph Infomax

Heterogeneous-Deep-Graph-Infomax Parameter Setting: HDGI-A: Node-level dimension: 16 Attention head: 4 Semantic-level attention vector: 8 learning rat

52 Oct 31, 2022
[CVPR 2021 Oral] Variational Relational Point Completion Network

VRCNet: Variational Relational Point Completion Network This repository contains the PyTorch implementation of the paper: Variational Relational Point

PL 121 Dec 12, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
Face Mask Detection on Image and Video using tensorflow and keras

Face-Mask-Detection Face Mask Detection on Image and Video using tensorflow and keras Train Neural Network on face-mask dataset using tensorflow and k

Nahid Ebrahimian 12 Nov 11, 2022
NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys in IEEE Transactions o

D-X-Y 137 Dec 20, 2022
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
A PyTorch implementation of Implicit Q-Learning

IQL-PyTorch This repository houses a minimal PyTorch implementation of Implicit Q-Learning (IQL), an offline reinforcement learning algorithm, along w

Garrett Thomas 30 Dec 12, 2022
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022