Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

Overview

DID-MDN

Density-aware Single Image De-raining using a Multi-stream Dense Network

He Zhang, Vishal M. Patel

[Paper Link] (CVPR'18)

We present a novel density-aware multi-stream densely connected convolutional neural network-based algorithm, called DID-MDN, for joint rain density estimation and de-raining. The proposed method enables the network itself to automatically determine the rain-density information and then efficiently remove the corresponding rain-streaks guided by the estimated rain-density label. To better characterize rain-streaks with dif- ferent scales and shapes, a multi-stream densely connected de-raining network is proposed which efficiently leverages features from different scales. Furthermore, a new dataset containing images with rain-density labels is created and used to train the proposed density-aware network.

@inproceedings{derain_zhang_2018,		
  title={Density-aware Single Image De-raining using a Multi-stream Dense Network},
  author={Zhang, He and Patel, Vishal M},
  booktitle={CVPR},
  year={2018}
} 

Prerequisites:

  1. Linux
  2. Python 2 or 3
  3. CPU or NVIDIA GPU + CUDA CuDNN (CUDA 8.0)

Installation:

  1. Install PyTorch and dependencies from http://pytorch.org (Ubuntu+Python2.7) (conda install pytorch torchvision -c pytorch)

  2. Install Torch vision from the source. (git clone https://github.com/pytorch/vision cd vision python setup.py install)

  3. Install python package: numpy, scipy, PIL, pdb

Demo using pre-trained model

python test.py --dataroot ./facades/github --valDataroot ./facades/github --netG ./pre_trained/netG_epoch_9.pth   

Pre-trained model can be downloaded at (put it in the folder 'pre_trained'): https://drive.google.com/drive/folders/1VRUkemynOwWH70bX9FXL4KMWa4s_PSg2?usp=sharing

Pre-trained density-aware model can be downloaded at (Put it in the folder 'classification'): https://drive.google.com/drive/folders/1-G86JTvv7o1iTyfB2YZAQTEHDtSlEUKk?usp=sharing

Pre-trained residule-aware model can be downloaded at (Put it in the folder 'residual_heavy'): https://drive.google.com/drive/folders/1bomrCJ66QVnh-WduLuGQhBC-aSWJxPmI?usp=sharing

Training (Density-aware Deraining network using GT label)

python derain_train_2018.py  --dataroot ./facades/DID-MDN-training/Rain_Medium/train2018new  --valDataroot ./facades/github --exp ./check --netG ./pre_trained/netG_epoch_9.pth.
Make sure you download the training sample and put in the right folder

Density-estimation Training (rain-density classifier)

python train_rain_class.py  --dataroot ./facades/DID-MDN-training/Rain_Medium/train2018new  --exp ./check_class	

Testing

python demo.py --dataroot ./your_dataroot --valDataroot ./your_dataroot --netG ./pre_trained/netG_epoch_9.pth   

Reproduce

To reproduce the quantitative results shown in the paper, please save both generated and target using python demo.py into the .png format and then test using offline tool such as the PNSR and SSIM measurement in Python or Matlab. In addition, please use netG.train() for testing since the batch for training is 1.

Dataset

Training (heavy, medium, light) and testing (TestA and Test B) data can be downloaded at the following link: https://drive.google.com/file/d/1cMXWICiblTsRl1zjN8FizF5hXOpVOJz4/view?usp=sharing

License

Code is under MIT license.

Acknowledgments

Great thanks for the insight discussion with Vishwanath Sindagi and help from Hang Zhang

Owner
He Zhang
Research Sc[email protected], Phd in Computer Vision, Deep Learning
He Zhang
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library

A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt

Youssef Chafiqui 2 Jan 07, 2022
An AFL implementation with UnTracer (our coverage-guided tracer)

UnTracer-AFL This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuz

113 Dec 17, 2022
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

5 Nov 12, 2021
Repository for RNNs using TensorFlow and Keras - LSTM and GRU Implementation from Scratch - Simple Classification and Regression Problem using RNNs

RNN 01- RNN_Classification Simple RNN training for classification task of 3 signal: Sine, Square, Triangle. 02- RNN_Regression Simple RNN training for

Nahid Ebrahimian 13 Dec 13, 2022
Lolviz - A simple Python data-structure visualization tool for lists of lists, lists, dictionaries; primarily for use in Jupyter notebooks / presentations

lolviz By Terence Parr. See Explained.ai for more stuff. A very nice looking javascript lolviz port with improvements by Adnan M.Sagar. A simple Pytho

Terence Parr 785 Dec 30, 2022
M3DSSD: Monocular 3D Single Stage Object Detector

M3DSSD: Monocular 3D Single Stage Object Detector Setup pytorch 0.4.1 Preparation Download the full KITTI detection dataset. Then place a softlink (or

mumianyuxin 64 Dec 27, 2022
JAX bindings to the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) library

JAX bindings to FINUFFT This package provides a JAX interface to (a subset of) the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) lib

Dan Foreman-Mackey 32 Oct 15, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.

Leo 100 Dec 25, 2022
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee TopologyPreservation in Segmentations"

TEDS-Net Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transfo

Madeleine K Wyburd 14 Jan 04, 2023
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
Codes for “A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”

DSAMNet The pytorch implementation for "A Deeply-supervised Attention Metric-based Network and an Open Aerial Image Dataset for Remote Sensing Change

Mengxi Liu 41 Dec 14, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022