GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

Overview

GalaXC

GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

@InProceedings{Saini21,
	author       = {Saini, D. and Jain, A.K. and Dave, K. and Jiao, J. and Singh, A. and Zhang, R. and Varma, M.},
	title        = {GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification},
	booktitle    = {Proceedings of The Web Conference},
	month = "April",
	year = "2021",
	}

Setup GalaXC

git clone https://github.com/Extreme-classification/GalaXC.git
conda env create -f GalaXC/environment.yml
conda activate galaxc
pip install hnswlib
git clone https://github.com/kunaldahiya/pyxclib.git
cd pyxclib
python setup.py install
cd ../GalaXC

Dataset Structure

Your dataset should have the following structure:

DatasetName (e.g. LF-AmazonTitles-131K)
│   trn_X.txt   (text for trn documents, one text in each line)
|   tst_X.tst   (text for tst documents, one text in each line)
|   Y.txt       (text for labels, one text in each line)
│   trn_X_Y.txt (trn labels in spmat format)
|   tst_X_Y.txt (tst labels in spmat format)
|   filter_labels_test.txt (filter labels where label and test documents are same)
│
└───XXCondensedData (embeddings for tst, trn documents and labels, for benchmark datasets, XX=DX[Astec])
    │   trn_point_embs.npy (2D numpy matrix for trn document embeddings)
    │   tst_point_embs.npy (2D numpy matrix for tst document embeddings)
    |   label_embs.npy     (2D numpy matrix for label embeddings)

We have provided the DX(embeddings from Module 1 of Astec) embeddings for public benchmark datasets for ease of use. Got better(higher recall) embeddings from somewhere? Just plug the new ones and GalaXC will have better preformance, no need to make any code change! These files for LF-AmazonTitles-131K, LF-WikiSeeAlsoTitles-320K and LF-AmazonTitles-1.3M can be found here. Except the files in DXCondensedData, all other files are copy of the datasets from The Extreme Classification Repository.

Sample Runs

To reproduce the numbers on public benchmark datasets reported in the paper, the sample runs are

LF-AmazonTitles-131K

python -u -W ignore train_main.py --dataset /your/path/to/data/LF-AmazonTitles-131K --save-model 0  --devices cuda:0  --num-epochs 30  --num-HN-epochs 0  --batch-size 256  --lr 0.001  --attention-lr 0.001 --adjust-lr 5,10,15,20,25,28  --dlr-factor 0.5  --mpt 0  --restrict-edges-num -1  --restrict-edges-head-threshold 20  --num-random-samples 30000  --random-shuffle-nbrs 0  --fanouts 4,3,2  --num-HN-shortlist 500   --embedding-type DX  --run-type NR  --num-validation 25000  --validation-freq -1  --num-shortlist 500 --predict-ova 0  --A 0.6  --B 2.6

LF-WikiSeeAlsoTitles-320K

python -u -W ignore train_main.py --dataset /your/path/to/data/LF-WikiSeeAlsoTitles-320K --save-model 0  --devices cuda:0  --num-epochs 30  --num-HN-epochs 0  --batch-size 256  --lr 0.001  --attention-lr 0.05 --adjust-lr 5,10,15,20,25,28  --dlr-factor 0.5  --mpt 0  --restrict-edges-num -1  --restrict-edges-head-threshold 20  --num-random-samples 32000  --random-shuffle-nbrs 0  --fanouts 4,3,2  --num-HN-shortlist 500  --repo 1  --embedding-type DX --run-type NR  --num-validation 25000  --validation-freq -1  --num-shortlist 500  --predict-ova 0  --A 0.55  --B 1.5

LF-AmazonTitles-1.3M

python -u -W ignore train_main.py --dataset /your/path/to/data/LF-AmazonTitles-1.3M --save-model 0  --devices cuda:0  --num-epochs 24  --num-HN-epochs 15  --batch-size 512  --lr 0.001  --attention-lr 0.05 --adjust-lr 4,8,12,16,18,20,22  --dlr-factor 0.5  --mpt 0  --restrict-edges-num 5  --restrict-edges-head-threshold 20  --num-random-samples 100000  --random-shuffle-nbrs 1  --fanouts 3,3,3  --num-HN-shortlist 500   --embedding-type DX  --run-type NR  --num-validation 25000  --validation-freq -1  --num-shortlist 500 --predict-ova 0  --A 0.6  --B 2.6

YOU MAY ALSO LIKE

Owner
Extreme Classification
Extreme Classification
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
Detectorch - detectron for PyTorch

Detectorch - detectron for PyTorch (Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inf

Ignacio Rocco 558 Dec 23, 2022
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022
Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles

Workspace Permissions Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles. Features Configure foreach workspace

Patrick.St. 18 Sep 26, 2022
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
Code for the Paper: Alexandra Lindt and Emiel Hoogeboom.

Discrete Denoising Flows This repository contains the code for the experiments presented in the paper Discrete Denoising Flows [1]. To give a short ov

Alexandra Lindt 3 Oct 09, 2022
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
Python Auto-ML Package for Tabular Datasets

Tabular-AutoML AutoML Package for tabular datasets Tabular dataset tuning is now hassle free! Run one liner command and get best tuning and processed

Sagnik Roy 18 Nov 20, 2022
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs

Perceiver IO Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs Usage import torch from src.perceiver.

Timur Ganiev 111 Nov 15, 2022
A Blender python script for getting asset browser custom preview images for objects and collections.

asset_snapshot A Blender python script for getting asset browser custom preview images for objects and collections. Installation: Click the code butto

Johnny Matthews 44 Nov 29, 2022
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
Official implementation of "Accelerating Reinforcement Learning with Learned Skill Priors", Pertsch et al., CoRL 2020

Accelerating Reinforcement Learning with Learned Skill Priors [Project Website] [Paper] Karl Pertsch1, Youngwoon Lee1, Joseph Lim1 1CLVR Lab, Universi

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 134 Dec 06, 2022
Newt - a Gaussian process library in JAX.

Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\

AaltoML 0 Nov 02, 2021
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte

Gerardo Durán-Martín 1k Jan 07, 2023
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
3D Avatar Lip Syncronization from speech (JALI based face-rigging)

visemenet-inference Inference Demo of "VisemeNet-tensorflow" VisemeNet is an audio-driven animator centric speech animation driving a JALI or standard

Junhwan Jang 17 Dec 20, 2022