Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Overview

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline
Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng
International Conference on Machine Learning (ICML), 2021

If you find our work useful in your research, please consider citing:

@article{goyal2021revisiting,
  title={Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline},
  author={Goyal, Ankit and Law, Hei and Liu, Bowei and Newell, Alejandro and Deng, Jia},
  journal={International Conference on Machine Learning},
  year={2021}
}

Getting Started

First clone the repository. We would refer to the directory containing the code as SimpleView.

git clone [email protected]:princeton-vl/SimpleView.git

Requirements

The code is tested on Linux OS with Python version 3.7.5, CUDA version 10.0, CuDNN version 7.6 and GCC version 5.4. We recommend using these versions especially for installing pointnet++ custom CUDA modules.

Install Libraries

We recommend you first install Anaconda and create a virtual environment.

conda create --name simpleview python=3.7.5

Activate the virtual environment and install the libraries. Make sure you are in SimpleView.

conda activate simpleview
pip install -r requirements.txt
conda install sed  # for downloading data and pretrained models

For PointNet++, we need to install custom CUDA modules. Make sure you have access to a GPU during this step. You might need to set the appropriate TORCH_CUDA_ARCH_LIST environment variable depending on your GPU model. The following command should work for most cases export TORCH_CUDA_ARCH_LIST="6.0;6.1;6.2;7.0;7.5". However, if the install fails, check if TORCH_CUDA_ARCH_LIST is correctly set. More details could be found here.

cd pointnet2_pyt && pip install -e . && cd ..

Download Datasets and Pre-trained Models

Make sure you are in SimpleView. download.sh script can be used for downloading all the data and the pretrained models. It also places them at the correct locations. First, use the following command to provide execute permission to the download.sh script.

chmod +x download.sh

To download ModelNet40 execute the following command. This will download the ModelNet40 point cloud dataset released with pointnet++ as well as the validation splits used in our work.

./download.sh modelnet40

To download the pretrained models, execute the following command.

./download.sh pretrained

Code Organization

  • SimpleView/models: Code for various models in PyTorch.
  • SimpleView/configs: Configuration files for various models.
  • SimpleView/main.py: Training and testing any models.
  • SimpleView/configs.py: Hyperparameters for different models and dataloader.
  • SimpleView/dataloader.py: Code for different variants of the dataloader.
  • SimpleView/*_utils.py: Code for various utility functions.

Running Experiments

Training and Config files

To train or test any model, we use the main.py script. The format for running this script is as follows.

python main.py --exp-config <path to the config>

The config files are named as <protocol>_<model_name><_extra>_run_<seed>.yaml (<protocol> ∈ [dgcnn, pointnet2, rscnn]; <model_name> ∈ [dgcnn, pointnet2, rscnn, pointnet, simpleview]; <_extra> ∈ ['',valid,0.5,0.25] ). For example, the config file to run an experiment for PointNet++ in DGCNN protocol with seed 1 dgcnn_pointnet2_run_1.yaml. To run a new experiment with a different seed, you need to change the SEED parameter in the config file. For all our experiments (including on the validation set) we do 4 runs with different seeds.

As discussed in the paper for the PointNet++ and SimpleView protocols, we need to first run an experiment to tune the number of epochs on the validation set. This could be done by first running the experiment <pointnet2/dgcnn>_<model_name>_valid_run_<seed>.yaml and then running the experiment <pointnet2/dgcnn>_<model_name>_run_<seed>.yaml. Based on the number of epochs achieving the best performance on the validation set, one could use the model trained on the complete training set to get the final test performance.

To train models on the partial training set (Table 7), use the configs named as dgcnn_<model_name>_valid_<0.25/0.5>_run_<seed>.yaml and <dgcnn>_<model_name>_<0.25/0.5>_run_<seed>.yaml.

Even with the same SEED the results could vary slightly because of the randomization introduced for faster cuDNN operations. More details could be found here

SimpleView Protocol

To run an experiment in the SimpleView protocol, there are two stages.

  • First tune the number of epochs on the validation set. This is done using configs dgcnn_<model_name>_valid_run_<seed>.yaml. Find the best number of epochs on the validation set, evaluated at every 25th epoch.
  • Train the model on the complete training set using configs dgcnn_<model_name>_run_<seed>.yaml. Use the performance on the test set at the fine-tuned number of epochs as the final performance.

Evaluate a pretrained model

We provide pretrained models. They can be downloaded using the ./download pretrained command and are stored in the SimpleView/pretrained folder. To test a pretrained model, the command is of the following format.

python main.py --entry <test/rscnn_vote/pn2_vote> --model-path pretrained/<cfg_name>/<model_name>.pth --exp-config configs/<cfg_name>.yaml

We list the evaluation commands in the eval_models.sh script. For example to evaluate models on the SimpleView protocol, use the commands here. Note that for the SimpleView and the Pointnet2 protocols, the model path has names in the format model_<epoch_id>.pth. Here epoch_id represents the number of epochs tuned on the validation set.

Performance of the released pretrained models on ModelNet40

Protocol → DGCNN - Smooth DCGNN - CE. RSCNN - No Vote PointNet - No Vote SimpleView
Method↓ (Tab. 2, Col. 7) (Tab. 2, Col. 6) (Tab. 2, Col. 5) (Tab. 2, Col. 2) (Tab. 4, Col. 2)
SimpleView 93.9 93.2 92.7 90.8 93.3
PointNet++ 93.0 92.8 92.6 89.7 92.6
DGCNN 92.6 91.8 92.2 89.5 92.0
RSCNN 92.3 92.0 92.2 89.4 91.6
PointNet 90.7 90.0 89.7 88.8 90.1

Acknowlegements

We would like to thank the authors of the following reposities for sharing their code.

  • PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation: 1, 2
  • PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space: 1, 2
  • Relation-Shape Convolutional Neural Network for Point Cloud Analysis: 1
  • Dynamic Graph CNN for Learning on Point Clouds: 1
Owner
Princeton Vision & Learning Lab
Princeton Vision & Learning Lab
PyTorch implementation of the paper Dynamic Token Normalization Improves Vision Transfromers.

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters"

Manga Character Screentone Synthesis Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters" presented in IEEE ISM 2

Tsubota 2 Nov 20, 2021
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
Jremesh-tools - Blender addon for quad remeshing

JRemesh Tools Blender 2.8 - 3.x addon for quad remeshing. Currently it is a wrap

Jayanam 89 Dec 30, 2022
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
Instance Semantic Segmentation List

Instance Semantic Segmentation List This repository contains lists of state-or-art instance semantic segmentation works. Papers and resources are list

bighead 87 Mar 06, 2022
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends

Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri

twsl 70 Oct 06, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

Yutong Zhang 1 Mar 01, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Intelligent Vision for Robotics in Complex Environment 10 Nov 07, 2022
Hybrid Neural Fusion for Full-frame Video Stabilization

FuSta: Hybrid Neural Fusion for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 430 Jan 04, 2023
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022