Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Overview

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline
Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng
International Conference on Machine Learning (ICML), 2021

If you find our work useful in your research, please consider citing:

@article{goyal2021revisiting,
  title={Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline},
  author={Goyal, Ankit and Law, Hei and Liu, Bowei and Newell, Alejandro and Deng, Jia},
  journal={International Conference on Machine Learning},
  year={2021}
}

Getting Started

First clone the repository. We would refer to the directory containing the code as SimpleView.

git clone [email protected]:princeton-vl/SimpleView.git

Requirements

The code is tested on Linux OS with Python version 3.7.5, CUDA version 10.0, CuDNN version 7.6 and GCC version 5.4. We recommend using these versions especially for installing pointnet++ custom CUDA modules.

Install Libraries

We recommend you first install Anaconda and create a virtual environment.

conda create --name simpleview python=3.7.5

Activate the virtual environment and install the libraries. Make sure you are in SimpleView.

conda activate simpleview
pip install -r requirements.txt
conda install sed  # for downloading data and pretrained models

For PointNet++, we need to install custom CUDA modules. Make sure you have access to a GPU during this step. You might need to set the appropriate TORCH_CUDA_ARCH_LIST environment variable depending on your GPU model. The following command should work for most cases export TORCH_CUDA_ARCH_LIST="6.0;6.1;6.2;7.0;7.5". However, if the install fails, check if TORCH_CUDA_ARCH_LIST is correctly set. More details could be found here.

cd pointnet2_pyt && pip install -e . && cd ..

Download Datasets and Pre-trained Models

Make sure you are in SimpleView. download.sh script can be used for downloading all the data and the pretrained models. It also places them at the correct locations. First, use the following command to provide execute permission to the download.sh script.

chmod +x download.sh

To download ModelNet40 execute the following command. This will download the ModelNet40 point cloud dataset released with pointnet++ as well as the validation splits used in our work.

./download.sh modelnet40

To download the pretrained models, execute the following command.

./download.sh pretrained

Code Organization

  • SimpleView/models: Code for various models in PyTorch.
  • SimpleView/configs: Configuration files for various models.
  • SimpleView/main.py: Training and testing any models.
  • SimpleView/configs.py: Hyperparameters for different models and dataloader.
  • SimpleView/dataloader.py: Code for different variants of the dataloader.
  • SimpleView/*_utils.py: Code for various utility functions.

Running Experiments

Training and Config files

To train or test any model, we use the main.py script. The format for running this script is as follows.

python main.py --exp-config <path to the config>

The config files are named as <protocol>_<model_name><_extra>_run_<seed>.yaml (<protocol> ∈ [dgcnn, pointnet2, rscnn]; <model_name> ∈ [dgcnn, pointnet2, rscnn, pointnet, simpleview]; <_extra> ∈ ['',valid,0.5,0.25] ). For example, the config file to run an experiment for PointNet++ in DGCNN protocol with seed 1 dgcnn_pointnet2_run_1.yaml. To run a new experiment with a different seed, you need to change the SEED parameter in the config file. For all our experiments (including on the validation set) we do 4 runs with different seeds.

As discussed in the paper for the PointNet++ and SimpleView protocols, we need to first run an experiment to tune the number of epochs on the validation set. This could be done by first running the experiment <pointnet2/dgcnn>_<model_name>_valid_run_<seed>.yaml and then running the experiment <pointnet2/dgcnn>_<model_name>_run_<seed>.yaml. Based on the number of epochs achieving the best performance on the validation set, one could use the model trained on the complete training set to get the final test performance.

To train models on the partial training set (Table 7), use the configs named as dgcnn_<model_name>_valid_<0.25/0.5>_run_<seed>.yaml and <dgcnn>_<model_name>_<0.25/0.5>_run_<seed>.yaml.

Even with the same SEED the results could vary slightly because of the randomization introduced for faster cuDNN operations. More details could be found here

SimpleView Protocol

To run an experiment in the SimpleView protocol, there are two stages.

  • First tune the number of epochs on the validation set. This is done using configs dgcnn_<model_name>_valid_run_<seed>.yaml. Find the best number of epochs on the validation set, evaluated at every 25th epoch.
  • Train the model on the complete training set using configs dgcnn_<model_name>_run_<seed>.yaml. Use the performance on the test set at the fine-tuned number of epochs as the final performance.

Evaluate a pretrained model

We provide pretrained models. They can be downloaded using the ./download pretrained command and are stored in the SimpleView/pretrained folder. To test a pretrained model, the command is of the following format.

python main.py --entry <test/rscnn_vote/pn2_vote> --model-path pretrained/<cfg_name>/<model_name>.pth --exp-config configs/<cfg_name>.yaml

We list the evaluation commands in the eval_models.sh script. For example to evaluate models on the SimpleView protocol, use the commands here. Note that for the SimpleView and the Pointnet2 protocols, the model path has names in the format model_<epoch_id>.pth. Here epoch_id represents the number of epochs tuned on the validation set.

Performance of the released pretrained models on ModelNet40

Protocol → DGCNN - Smooth DCGNN - CE. RSCNN - No Vote PointNet - No Vote SimpleView
Method↓ (Tab. 2, Col. 7) (Tab. 2, Col. 6) (Tab. 2, Col. 5) (Tab. 2, Col. 2) (Tab. 4, Col. 2)
SimpleView 93.9 93.2 92.7 90.8 93.3
PointNet++ 93.0 92.8 92.6 89.7 92.6
DGCNN 92.6 91.8 92.2 89.5 92.0
RSCNN 92.3 92.0 92.2 89.4 91.6
PointNet 90.7 90.0 89.7 88.8 90.1

Acknowlegements

We would like to thank the authors of the following reposities for sharing their code.

  • PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation: 1, 2
  • PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space: 1, 2
  • Relation-Shape Convolutional Neural Network for Point Cloud Analysis: 1
  • Dynamic Graph CNN for Learning on Point Clouds: 1
Owner
Princeton Vision & Learning Lab
Princeton Vision & Learning Lab
LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION

Query Selector Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sp

MORAI 62 Dec 17, 2022
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021
TrackTech: Real-time tracking of subjects and objects on multiple cameras

TrackTech: Real-time tracking of subjects and objects on multiple cameras This project is part of the 2021 spring bachelor final project of the Bachel

5 Jun 17, 2022
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
Learning Temporal Consistency for Low Light Video Enhancement from Single Images (CVPR2021)

StableLLVE This is a Pytorch implementation of "Learning Temporal Consistency for Low Light Video Enhancement from Single Images" in CVPR 2021, by Fan

99 Dec 19, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

23 Nov 11, 2022
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas Köhler 893 Dec 28, 2022
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.

CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1

The Australian e-Health Research Centre 21 Dec 28, 2022
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
StyleGAN - Official TensorFlow Implementation

StyleGAN — Official TensorFlow Implementation Picture: These people are not real – they were produced by our generator that allows control over differ

NVIDIA Research Projects 13.1k Jan 09, 2023
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
Autolfads-tf2 - A TensorFlow 2.0 implementation of Latent Factor Analysis via Dynamical Systems (LFADS) and AutoLFADS

autolfads-tf2 A TensorFlow 2.0 implementation of LFADS and AutoLFADS. Installati

Systems Neural Engineering Lab 11 Oct 29, 2022