[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

Overview

mmTransformer

Introduction

  • This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented in the commercial project, we provide inference code of model with six trajectory propopals for your reference.

  • For other information, please refer to our paper Multimodal Motion Prediction with Stacked Transformers. (CVPR 2021) [Paper] [Webpage]

img

Set up your virtual environment

  • Initialize virtual environment:

    conda create -n mmTrans python=3.7
    
  • Install agoverse api. Please refer to this page.

  • Install the pytorch. The latest codes are tested on Ubuntu 16.04, CUDA11.1, PyTorch 1.8 and Python 3.7: (Note that we require the version of torch >= 1.5.0 for testing with pretrained model)

    pip install torch==1.8.0+cu111\
          torchvision==0.9.0+cu111\
          torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
    
  • For other requirement, please install with following command:

    pip install -r requirement.txt
    

Preparation

Download the code, model and data

  1. Clone this repo from the GitHub.

     git clone https://github.com/decisionforce/mmTransformer.git
    
  2. Download the pretrained model and data [here] (map.pkl for Python 3.7 is available [here]) and save it to ./models and ./interm_data.

     cd mmTransformer
     mkdir models
     mkdir interm_data
    
  3. Finally, your directory structure should look something like this:

     mmTransformer
     └── models
         └── demo.pt
     └── interm_data
         └── argoverse_info_val.pkl
         └── map.pkl
    

Preprocess the dataset

Alternatively, you can process the data from scratch using following commands.

  1. Download Argoverse dataset and create a symbolic link to ./data folder or use following commands.

     cd path/to/mmtransformer/root
     mkdir data
     cd data
     wget https://s3.amazonaws.com/argoai-argoverse/forecasting_val_v1.1.tar.gz 
     tar -zxvf  forecasting_val_v1.1.tar.gz
    
  2. Then extract the agent and map information from raw data via Argoverse API:

     python -m lib.dataset.argoverse_convertor ./config/demo.py
    
  3. Finally, your directory structure should look something like above illustrated.

Format of processed data in ‘argoverse_info_val.pkl’:

img

Format of map information in ‘map.pkl’:

img

Run the mmTransformer

For testing:

python Evaluation.py ./config/demo.py --model-name demo

Results

Here we showcase the expected results on validation set:

Model Expected results Results in paper
minADE 0.709 0.713
minFDE 1.081 1.153
MR (K=6) 10.2 10.6

TODO

  • We are going to open source our visualization tools and a demo result. (TBD)

Contact us

If you have any issues with the code, please contact to this email: [email protected]

Citation

If you find our work useful for your research, please consider citing the paper

@article{liu2021multimodal,
  title={Multimodal Motion Prediction with Stacked Transformers},
  author={Liu, Yicheng and Zhang, Jinghuai and Fang, Liangji and Jiang, Qinhong and Zhou, Bolei},
  journal={Computer Vision and Pattern Recognition},
  year={2021}
}
Owner
DeciForce: Crossroads of Machine Perception and Autonomy
Research on Unifying Machine Perception and Autonomy in Zhou Group
DeciForce: Crossroads of Machine Perception and Autonomy
Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or columns of a 2d feature map, as a standalone package for Pytorch

Triangle Multiplicative Module - Pytorch Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or c

Phil Wang 22 Oct 28, 2022
A package related to building quasi-fibration symmetries

qf A package related to building quasi-fibration symmetries. If you'd like to learn more about how it works, see the brief explanation and References

Paolo Boldi 1 Dec 01, 2021
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Alan Bi 576 Dec 29, 2022
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

Benedek Rozemberczki 303 Dec 09, 2022
This is a simple plugin for Vim that allows you to use OpenAI Codex.

🤖 Vim Codex An AI plugin that does the work for you. This is a simple plugin for Vim that will allow you to use OpenAI Codex. To use this plugin you

Tom Dörr 195 Dec 28, 2022
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Ibai Gorordo 99 Dec 31, 2022
An Artificial Intelligence trying to drive a car by itself on a user created map

An Artificial Intelligence trying to drive a car by itself on a user created map

Akhil Sahukaru 17 Jan 13, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

SCAI-QReCC-21 [leaderboards] [registration] [forum] [contact] [SCAI] Answer a series of contextually-dependent questions like they may occur in natura

19 Sep 28, 2022
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated p

Jiaqi Gu 9 Jul 14, 2022
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
Spatial Intention Maps for Multi-Agent Mobile Manipulation (ICRA 2021)

spatial-intention-maps This code release accompanies the following paper: Spatial Intention Maps for Multi-Agent Mobile Manipulation Jimmy Wu, Xingyua

Jimmy Wu 70 Jan 02, 2023
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

dcf-game-infrastructure All the components necessary to run a game of the OOO DC

Order of the Overflow 46 Sep 13, 2022
This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Hansheng Jiang 6 Nov 18, 2022
PyTorch implementation of "Debiased Visual Question Answering from Feature and Sample Perspectives" (NeurIPS 2021)

D-VQA We provide the PyTorch implementation for Debiased Visual Question Answering from Feature and Sample Perspectives (NeurIPS 2021). Dependencies P

Zhiquan Wen 19 Dec 22, 2022