A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data

Overview

Easy-ERA5-Trck

Easy-ERA5-Trck is a super lightweight Lagrangian model for calculating thousands (even millions) of trajectories simultaneously and efficiently using ERA5 data sets. It can implement super simplified equations of 3-D motion to accelerate integration, and use python multiprocessing to parallelize the integration tasks. Due to its simplification and parallelization, Easy-ERA5-Trck performs great speed in tracing massive air parcels, which makes areawide tracing possible.

Another version using WRF output to drive the model can be found here.

Caution: Trajectory calculation is based on the nearest-neighbor interpolation and first-guess velocity for super efficiency. Accurate calculation algorithm can be found on http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-14-00110.1, or use a professional and complicated model e.g. NOAA HYSPLIT instead.

Any question, please contact Zhenning LI ([email protected])

Galleries

Tibetan Plateau Air Source Tracers

tp_tracer

Tibetan Plateau Air Source Tracers (3D)

tp_tracer_3d

Install

If you wish to run easy-era5-trck using grib2 data, Please first install ecCodes.

Please install python3 using Anaconda3 distribution. Anaconda3 with python3.8 has been fully tested, lower version of python3 may also work (without testing).

Now, we recommend to create a new environment in Anaconda and install the requirements.txt:

conda create -n test_era5trck python=3.8
conda activate test_era5trck
pip install -r requirements.txt

If everything goes smoothly, first cd to the repo root path, and run config.py:

python3 config.py

This will convey fundamental configure parameters to ./conf/config_sys.ini.

Usage

test case

When you install the package ready. You may first want to try the test case. config.ini has been set for testcase, which is a very simple run:

[INPUT]
input_era5_case = ./testcase/
input_parcel_file=./input/input.csv

[CORE]
# timestep in min
time_step = 30
precession = 1-order
# 1 for forward, -1 for backward
forward_option = -1
# for forward, this is the initial time; otherwise, terminating time
start_ymdh = 2015080212
# integration length in hours
integration_length = 24
# how many processors are willing to work for you
ntasks = 4
# not used yet
boundary_check = False

[OUTPUT]
# output format, nc/csv, nc recommended for large-scale tracing
out_fmt = nc
out_prefix = testcase
# output frequency in min
out_frq = 60
# when out_fmt=csv, how many parcel tracks will be organized in a csv file.
sep_num = 5000

When you type python3 run.py, Easy-ERA5-Trck will uptake the above configurations, by which the ERA5 UVW data in ./testcase will be imported for driving the Lagrangian integration.

Now you will see your workers are dedicated to tracing the air parcels. After several seconds, if you see something like:

2021-05-31 17:32:14,015 - INFO : All subprocesses done.
2021-05-31 17:32:14,015 - INFO : Output...
2021-05-31 17:32:14,307 - INFO : Easy ERA5 Track Completed Successfully!

Congratulations! The testcase works smoothly on your machine!

Now you could check the output file in ./output, named as testcase.I20150802120000.E20150801120000.nc|csv, which indicates the initial time and endding time. For backward tracing, I > E, and vice versa.

You could choose output files as plain ascii csv format or netCDF format (Recommended). netCDF format output metadata looks like:

{
dimensions:
    time = 121 ;
    parcel_id = 413 ;
variables:
    double xlat(time, parcel_id) ;
        xlat:_FillValue = NaN ;
    double xlon(time, parcel_id) ;
        xlon:_FillValue = NaN ;
    double xh(time, parcel_id) ;
        xh:_FillValue = NaN ;
    int64 time(time) ;
        time:units = "hours since 1998-06-10 00:00:00" ;
        time:calendar = "proleptic_gregorian" ;
    int64 parcel_id(parcel_id) ;
}

setup your case

Congratulation! After successfully run the toy case, of course, now you are eager to setup your own case. First, build your own case directory, for example, in the repo root dir:

mkdir mycase

Now please make sure you have configured ECMWF CDS API correctly, both in your shell environment and python interface.

Next, set [DOWNLOAD] section in config.ini to fit your desired period, levels, and region for downloading.

[DOWNLOAD]
store_path=./mycase/
start_ymd = 20151220
end_ymd = 20160101
pres=[700, 750, 800, 850, 900, 925, 950, 975, 1000]

# eara: [North, West, South, East]
area=[-10, 0, -90, 360]
# data frame frequency: recommend 1, 2, 3, 6. 
# lower frequency will download faster but less accurate in tracing
freq_hr=3

Here we hope to download 1000-700 hPa data, from 20151220 to 20160101, 3-hr temporal frequency UVW data from ERA5 CDS.

./utlis/getERA5-UVW.py will help you to download the ERA5 reanalysis data for your case, in daily file with freq_hr temporal frequency.

cd utils
python3 getERA5-UVW.py

While the machine is downloading your data, you may want to determine the destinations or initial points of your targeted air parcels. ./input/input.csv: This file is the default file prescribing the air parcels for trajectory simulation. Alternatively, you can assign it by input_parcel_file in config.ini.

The format of this file:

airp_id, init_lat, init_lon, init_h0 (hPa)

For forward trajectory, the init_{lat|lon|h0} denote initial positions; while for backward trajectory, they indicate ending positions. You can write it by yourself. Otherwise, there is also a utility ./utils/take_box_grid.py, which will help you to take air parcels in a rectanguler domain.

plese also set other sections in config.ini accordingly, now these air parcels are waiting your command python3 run.py to travel the world!

Besides, ./utils/control_multi_run.py will help you to run multiple seriels of the simulation. There are some postprocessing scripts for visualization in post_process, you may need to modify them to fit your visualization usage.

Repository Structure

run.py

./run.py: Main script to run the Easy-ERA5-Trck.

conf

  • ./conf/config.ini: Configure file for the model. You may set ERA5 input file, input frequency, integration time steps, and other settings in this file.
  • ./conf/config_sys.ini: Configure file for the system, generate by run config.py.
  • ./conf/logging_config.ini: Configure file for logging module.

core

  • ./core/lagrange.py: Core module for calculating the air parcels Lagrangian trajectories.

lib

  • ./lib/cfgparser.py: Module file containing read/write method of the config.ini
  • ./lib/air_parcel.py: Module file containing definition of air parcel class and related methods such as march and output.
  • ./lib/preprocess_era5inp.py: Module file that defines the field_hdl class, which contains useful fields data (U, V, W...) and related method, including ERA5 grib file IO operations.
  • ./lib/utils.py: utility functions for the model.

post_process

Some visualization scripts.

utils

Utils for downloading, generating input.csv, etc.

Version iteration

Oct 28, 2020

  • Fundimental pipeline design, multiprocessing, and I/O.
  • MVP v0.01

May 31, 2021

  • Major Revision, logging module, and exception treatment
  • test case
  • Major documentation update
  • Utility for data downloading
  • Utility for taking grids in a box
  • Basic functions done, v0.10

Jun 09, 2021

  • The automatic detection of longitude range is added, allowing users to adopt two different ranges of longitude: [-180°, 180°] or [0°, 360°].
  • Currently, if you want to use the [-180°, 180°] data version, you can only set ntasks = 1 in the config.ini file.
You might also like...
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB  HUAWEI P40 NCNN benchmark: 6ms/img,
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Releases(v0.10-beta)
  • v0.10-beta(Jun 2, 2021)

    This is a pre-release of Easy-ERA5-Trck. In this v0.10-beta pre-release, we establish the basic functions forward/backward tracing the air parcels in massive amount, exploiting the usage of multiprocessing in Python. You could use the tracing output for visualization, and analysis which does not require very high precession/accuracy. Boundary check has not been involved yet, and exception handlings are still under-developed, with no promise to cover your exceptional cases.

    Source code(tar.gz)
    Source code(zip)
Owner
Zhenning Li
Wind extinguishes a candle but energizes fire.
Zhenning Li
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
A curated list and survey of awesome Vision Transformers.

English | 简体中文 A curated list and survey of awesome Vision Transformers. You can use mind mapping software to open the mind mapping source file. You c

OpenMMLab 281 Dec 21, 2022
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022
This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled Time Series presented at Causal Analysis Workshop 2021.

signed-area-causal-inference This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled

Will Glad 1 Mar 11, 2022
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
lightweight python wrapper for vowpal wabbit

vowpal_porpoise Lightweight python wrapper for vowpal_wabbit. Why: Scalable, blazingly fast machine learning. Install Install vowpal_wabbit. Clone and

Joseph Reisinger 163 Nov 24, 2022
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
Transformer Huffman coding - Complete Huffman coding through transformer

Transformer_Huffman_coding Complete Huffman coding through transformer 2022/2/19

3 May 19, 2022
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022
Website which uses Deep Learning to generate horror stories.

Creepypasta - Text Generator Website which uses Deep Learning to generate horror stories. View Demo · View Website Repo · Report Bug · Request Feature

Dhairya Sharma 5 Oct 14, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Python cx_Oracle Notebooks, 2022 The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Da

Christopher Jones 13 Dec 15, 2022
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

MobileSal IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection This repository contains full training & testing code, and pr

Yu-Huan Wu 52 Jan 06, 2023
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation

BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.

Yanda Meng 15 Nov 08, 2022
OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

🔥 DrugOOD 🔥 : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery This is the official implementation of the DrugOOD project, this is the

108 Dec 17, 2022
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

48 Dec 08, 2022
Multiple custom object count and detection using YOLOv3-Tiny method

Electronic-Component-YOLOv3 Introduce This project created to detect, count, and recognize multiple custom object using YOLOv3-Tiny method. The target

Derwin Mahardika 2 Nov 14, 2022