A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

Overview

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing

license

This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightweight YOLO"(CSL-YOLO),

it is achieving better detection performance with only 43% FLOPs and 52% parameters than Tiny-YOLOv4.

Paper Link: https://arxiv.org/abs/2107.04829

Requirements

How to Get Started?

#Predict
python3 main.py -p cfg/predict_coco.cfg

#Train
python3 main.py -t cfg/train_coco.cfg

#Eval
python3 main.py -ce cfg/eval_coco.cfg

WebCam DEMO(on CPU)

This DEMO runs on a pure CPU environment, the CPU is I7-6600U(2.6Ghz~3.4Ghz), the model scale is 224x224, and the FPS is about 10.

Please execute the following script to get this DEMO, the "camera_idx" in the cfg file represents the camera number you specified.

#Camera DEMO
python3 main.py -d cfg/demo_coco.cfg

More Info

Change Model Scale

The model's default scale is 224x224, if you want to change the scale to 320~512,

please go to cfg/XXXX.cfg and change the following two parts:

# input_shape=[512,512,3]
# out_hw_list=[[64,64],[48,48],[32,32],[24,24],[16,16]]
# input_shape=[416,416,3]
# out_hw_list=[[52,52],[39,39],[26,26],[20,20],[13,13]]
# input_shape=[320,320,3]
# out_hw_list=[[40,40],[30,30],[20,20],[15,15],[10,10]]
input_shape=[224,224,3]
out_hw_list=[[28,28],[21,21],[14,14],[10,10],[7,7]]

weight_path=weights/224_nolog.hdf5

                         |
                         | 224 to 320
                         V
                         
# input_shape=[512,512,3]
# out_hw_list=[[64,64],[48,48],[32,32],[24,24],[16,16]]
# input_shape=[416,416,3]
# out_hw_list=[[52,52],[39,39],[26,26],[20,20],[13,13]]
input_shape=[320,320,3]
out_hw_list=[[40,40],[30,30],[20,20],[15,15],[10,10]]
# input_shape=[224,224,3]
# out_hw_list=[[28,28],[21,21],[14,14],[10,10],[7,7]]

weight_path=weights/320_nolog.hdf5

Fully Dataset

The entire MS-COCO data set is too large, here only a few pictures are stored for DEMO,

if you need complete data, please download on this page.

Our Data Format

We did not use the official format of MS-COCO, we expressed a bounding box as following:

[ left_top_x<float>, left_top_y<float>, w<float>, h<float>, confidence<float>, class<str> ]

The bounding boxes contained in a picture are represented by single json file.

For detailed format, please refer to the json file in "data/coco/train/json".

AP Performance on MS-COCO

For detailed COCO report, please refer to "mscoco_result".

TODOs

  • Improve the calculator script of FLOPs.
  • Using Focal Loss will cause overfitting, we need to explore the reasons.
Owner
Miles Zhang
Miles Zhang
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning

Machine_Learning Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning This project is based on 2 case-studies:

Avnika Mehta 1 Jan 27, 2022
This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.

slue-toolkit We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE

ASAPP Research 39 Sep 21, 2022
DCA - Official Python implementation of Delaunay Component Analysis algorithm

Delaunay Component Analysis (DCA) Official Python implementation of the Delaunay

Petra Poklukar 9 Sep 06, 2022
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

226 Jan 08, 2023
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
💊 A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network.

UNet-SIDE The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network. For Super Reso

TIANTIAN XU 1 Jan 13, 2022
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model

SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede

Edresson Casanova 92 Dec 09, 2022
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
Code for Recurrent Mask Refinement for Few-Shot Medical Image Segmentation (ICCV 2021).

Recurrent Mask Refinement for Few-Shot Medical Image Segmentation Steps Install any missing packages using pip or conda Preprocess each dataset using

XIE LAB @ UCI 39 Dec 08, 2022
QICK: Quantum Instrumentation Control Kit

QICK: Quantum Instrumentation Control Kit The QICK is a kit of firmware and software to use the Xilinx RFSoC to control quantum systems. It consists o

81 Dec 15, 2022
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022
PyTorch implementation of DreamerV2 model-based RL algorithm

PyDreamer Reimplementation of DreamerV2 model-based RL algorithm in PyTorch. The official DreamerV2 implementation can be found here. Features ... Run

118 Dec 15, 2022
Learning from graph data using Keras

Steps to run = Download the cora dataset from this link : https://linqs.soe.ucsc.edu/data unzip the files in the folder input/cora cd code python eda

Mansar Youness 64 Nov 16, 2022
This repository compare a selfie with images from identity documents and response if the selfie match.

aws-rekognition-facecompare This repository compare a selfie with images from identity documents and response if the selfie match. This code was made

1 Jan 27, 2022
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022