An open source Jetson Nano baseboard and tools to design your own.

Related tags

Deep Learninghardware
Overview

My Jetson Nano Baseboard

Render of My Jetson Nano Baseboard

Picture of My Jetson Nano Baseboard

This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It also repurposes some of the Jetson Nano’s interface signals for simple beginner projects.

This baseboard, as designed, contains:

  • A 5V, 4A DC barrel jack
  • 4 USB 2.0 connectors
  • An HDMI connector
  • A UART-to-USB bridge
  • A debug USB
  • A 40-pin GPIO
  • A servo header
  • Three user-interactive buttons (power, reset, and force recovery)
  • A flex connector for an OLED display

Use these files to kickstart your own application-specific baseboard or implement some quick and easy projects!

Quick Start

You only need a computer to get started right now! For a more in-depth setup guide, check out docs/setup.md.

  1. Install the appropriate version of KiCAD, an open source schematic and layout design program, for your operating system here.

  2. Download this GitHub repository either as a ZIP or on the command line.

  3. Save the following symbol and footprint libraries to the “Design Files/Libraries” folder (you may have to make an account – alternatively, if you want the practice, you could try making them yourself):

    1. B3SL-1002P
    2. TPD4E02B04DQAR
    3. 3-1734592-0
    4. DC-005-2.0A
    5. ACM2012-201-2P-T001
    6. 10029449-111RLF
    7. 2309413-1
  4. Open the project (.pro) file in KiCAD.

  5. Add the symbol and footprint libraries as project-specific to your KiCAD program, following this guide. You will know that the libraries are correctly loaded when there are no more boxes with question marks.

  6. You are now set up to tinker with the files and launch your own hardware designs!

Be sure to download the Jetson Nano Product Design Guide here (NVIDIA Developer account required) to help you with your design.

If you want to make your boards and test them, you’ll need the Jetson Nano module (not included, can be bought as part of the developer kit here). It is also helpful to have electronics equipment like an oscilloscope, a multimeter, and a soldering iron.

Questions and Improvements

If you have a suggestion, please open an issue on GitHub.

Please share your projects with us on the Jetson Developer Forums.

Comments
  • Servo PWM signal does not switch logic levels, remains high

    Servo PWM signal does not switch logic levels, remains high

    Problem When running the sampleproj/servo_pwm.py script, SERVO_PWM remains high, even as the GPIO07 pin outputs a PWM signal.

    Release A00, no modifications

    Observed Behavior Servo PWM remains high even when PWM script is run.

    GPIO07 at 40-pin header: gpio7 configured0

    SERVO_PWM at servo header: gpio 7

    Root Cause Theory The pullup could be too strong; the transistor connection may not be consistent across boards. This is another issue that switching to a larger package transistor should fix.

    Suggested Next Steps

    • Switch to larger package transistor (as in issue #5 & 2)
    • Test additional boards to ensure transistor connection remains consistent
    bug A01 Fix 
    opened by wolframalexa 1
  • Fails sleep/wake software cycle

    Fails sleep/wake software cycle

    Problem Board cannot be wake from software; the physical button must be pushed.

    Release A00, no modifications

    Observed Behavior When running the validation/sleep_func.sh script, the device does not wake until the power button is pushed.

    Root Cause Theory An issue with how L4T interacts with the baseboard.

    Suggested Next Steps

    • Probe power logic signals to ensure sequencing is correct
    • Read L4T documentation for power design
    bug 
    opened by wolframalexa 1
  • OLED display does not fit in specified connector

    OLED display does not fit in specified connector

    Problem The specified OLED display does not fit in the specified connector. Users cannot use the display.

    Release A00, no modifications

    Observed Behavior The connector is too small for the display.

    Root Cause Theory Mistakes were made.

    Suggested Next Steps Choose new connector for display.

    bug A01 Fix 
    opened by wolframalexa 1
  • Fan PWM signal not in compliance

    Fan PWM signal not in compliance

    Problem Users cannot use a fan, because the fan PWM signal is not in electrical compliance.

    Observed Behavior GPIO14 provides a nice PWM signal, but the signal becomes less crisp as it goes through the level shifter. In both images below, the blue line is the FAN_PWM_LS node. Yellow: left = GPIO14, right = FAN_PWM_INV.

    image image

    The transistor Q3 should invert the PWM signal, but does not appear to do so.

    Root Cause Theory At 20kHz, it is unlikely the fan signal is switching too fast for the transistor. It may be due to a transistor misalignment; switch from the DMN26D0UFB4-7 to the DMN26D0UT-7, which is in a larger SOT-523 package, to avoid misalignments.

    Suggested Next Steps Ask a more experienced engineer. May need a larger pullup, or more power control.

    bug A01 Fix 
    opened by wolframalexa 1
  • Some USB 2.0 type A ports are not functional

    Some USB 2.0 type A ports are not functional

    Problem Some USB ports on some boards do not respond when a USB mouse or keyboard is plugged into them.

    Observed Behavior When a USB mouse or keyboard is plugged into one of the four type A ports, it occasionally does not work (the pointer does not move, no text appears on screen). This hinders the ability for the user to interact with the display, and to use the USB devices they need.

    Root Cause Theory This is only present on some ports on some boards; it could be a manufacturing or hub chip error.

    Suggested Next Steps

    • Visually check all USB components to ensure there is no damage
    • Ensure hub chip is strapped correctly
    • Ensure USB layout guidelines are followed for signal integrity
    bug A01 Fix 
    opened by wolframalexa 1
  • Low-resolution HDMI (1280x720)

    Low-resolution HDMI (1280x720)

    Problem The maximum HDMI resolution seems to be 1280x720, whereas the Jetson Nano achieves a resolution of 2560x1440. As a result, the display appears zoomed in.

    Release A00, no modifications

    Observed Behavior

    • This is present on all boards, with the same module as on the official baseboard - probably a hardware design issue, and not a software issue
    • The resolution on the official Jetson Nano is twice that of "My Jetson Nano Baseboard"

    Root Cause Theory Resistor values may need to be tuned for better resolutions. Additionally, an EEPROM may be read to confirm HDMI resolution.

    Suggested Next Steps Investigate L4T behavior with regard to HDMI and resistor tuning on CEC line.

    bug A01 Fix 
    opened by wolframalexa 1
  • Power LED does not light up on some boards

    Power LED does not light up on some boards

    Problem On some boards, the power LED D6 does not light, even though the board completes its power-on sequence and has booted normally.

    Release A00, no modifications

    Observed Behavior

    • The LED is the correct direction
    • The board completes its power on sequence and the software functions as expected
    • GPIO04 remains LOW at 0.6V, even though it should be driven HIGH upon power-up
    • There is no measured voltage drop across R32
    • There is an insufficient voltage drop across D6

    Root Cause Theory The gate threshold voltage varies depending on the individual transistor. It could be that this transistor has a higher V_GS and does not turn on when GPIO04 is at 0.6V. Additionally, the transistor Q7 could be misaligned.

    Suggested Next Steps

    • Investigate behavior of GPIO04, which should be HIGH upon power-on. Remove R31 to ensure no loading effects from transistor.
    • Change all transistors DMN26D0UFB4-7 to the DMN26D0UT-7, which is in a larger SOT-523 package, to avoid misalignments.
    bug A01 Fix 
    opened by wolframalexa 1
  • Make silkscreen more readable

    Make silkscreen more readable

    • Increase silkscreen size from 0.5x0.5mm to 0.438x0.7mm to make the text more readable.
    • Add polarity for all ICs and polarized components to aid in soldering
    • Add silkscreen on front for 40-pin header
    enhancement A01 Fix 
    opened by wolframalexa 0
Releases(A01)
  • A01(Aug 12, 2021)

    After having manufactured the boards and validated them, we're fixing some functionality. Here are the changes, which you can read about in our issues:

    • Fix footprints (#11):
      • DC Jack flipped
      • GPIO header flipped (pin 1 should be pin 2)
      • USB footprint with soldermask (#4)
      • New OLED display connector & display (#6)
    • Usability enhancements, with more readable silkscreen (#10)
    • BOM errors:
      • SODIMM connector (#9)
      • HDMI current limiting resistor, which allows for correct resolution (#3)
      • Larger transistor footprint to avoid misalignments (#8, #5)
    • Fix pullup
      • Add pullup to GPIO04 (#2)
    Source code(tar.gz)
    Source code(zip)
  • A00(Jul 28, 2021)

Owner
NVIDIA AI IOT
NVIDIA AI IOT
Bytedance Inc. 2.5k Jan 06, 2023
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe

Hongwen Zhang 450 Dec 28, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022
Project to create an open-source 6 DoF input device

6DInputs A Project to create open-source 3D printed 6 DoF input devices Note the plural ('6DInputs' and 'devices') in the headings. We would like seve

RepRap Ltd 47 Jul 28, 2022
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

5 May 23, 2022
[ACM MM 2021] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)

Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation) [arXiv] [paper] @inproceedings{hou2021multiview, title={Multiview

Yunzhong Hou 27 Dec 13, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.

Personalized Trajectory Prediction via Distribution Discrimination (DisDis) The official PyTorch code implementation of "Personalized Trajectory Predi

25 Dec 20, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https

Intelligent Computing Lab at Yale University 28 Nov 18, 2022
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022