Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach

Overview

Introduction

Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach


Datasets: WebFG-496 & WebiNat-5089

WebFG-496

WebFG-496 contains 200 subcategories of the "Bird" (Web-bird), 100 subcategories of the Aircraft" (Web-aircraft), and 196 subcategories of the "Car" (Web-car). It has a total number of 53339 web training images.

Download the dataset:

wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-aircraft.tar.gz
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-bird.tar.gz
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-car.tar.gz

WebiNat-5089

WebiNat-5089 is a large-scale webly supervised fine-grained dataset, which consists of 5089 subcategories and 1184520 web training images.

Download the dataset:

wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-00
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-01
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-02
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-03
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-04
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-05
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-06
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-07
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-08
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-09
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-10
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-11
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-12
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-13

Dataset Briefing

  1. The statistics of popular fine-grained datasets and our datasets. “Supervision" means the training data is manually labeled (“Manual”) or collected from the web (“Web”).

dataset-stats

  1. Detailed construction process of training data in WebFG-496 and WebiNat-5089. “Testing Source” indicates where testing images come from. “Imbalance” is the number of images in the largest class divided by the number of images in the smallest.

dataset-construction_detail

  1. Rough label accuracy of training data estimated by random sampling for WebFG-496 and WebiNat-5089.

dataset-estimated_label_accuracy


Peer-learning model

Network Architecture

The architecture of our proposed peer-learning model is as follows network

Installation

After creating a virtual environment of python 3.5, run pip install -r requirements.txt to install all dependencies

How to use

The code is currently tested only on GPU

  • Data Preparation

    • WebFG-496

      Download data into PLM root directory and decompress them using

      tar -xvf web-aircraft.tar.gz
      tar -xvf web-bird.tar.gz
      tar -xvf web-car.tar.gz
      
    • WebiNat-5089

      Download data into PLM root directory and decompress them using

      cat web-iNat.tar.gz.part-* | tar -zxv
      
  • Source Code

    • If you want to train the whole network from beginning using source code on the WebFG-496 dataset, please follow subsequent steps

      • In Web496_train.sh
        • Modify CUDA_VISIBLE_DEVICES to proper cuda device id.
        • Modify DATA to web-aircraft/web-bird/web-car as needed and then modify N_CLASSES accordingly.
      • Activate virtual environment(e.g. conda) and then run the script
        bash Web496_train.sh
        
    • If you want to train the whole network from beginning using source code on the WebiNat-5089 dataset, please follow subsequent steps

      • Modify CUDA_VISIBLE_DEVICES to proper cuda device id in Web5089_train.sh.
      • Activate virtual environment(e.g. conda) and then run the script
        bash Web5089_train.sh
        
  • Demo

    • If you just want to do a quick test on the model and check the final fine-grained recognition performance on the WebFG-496 dataset, please follow subsequent steps

      • Download one of the following trained models into model/ using
        wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/Models/plm_web-aircraft_bcnn_best-epoch_74.38.pth
        wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/Models/plm_web-bird_bcnn_best-epoch_76.48.pth
        wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/Models/plm_web-car_bcnn_best-epoch_78.52.pth
        
      • Activate virtual environment (e.g. conda)
      • In Web496_demo.sh
        • Modify CUDA_VISIBLE_DEVICES to proper cuda device id.
        • Modify the model name according to the model downloaded.
        • Modify DATA to web-aircraft/web-bird/web-car according to the model downloaded and then modify N_CLASSES accordingly.
      • Run demo using bash Web496_demo.sh
    • If you just want to do a quick test on the model and check the final fine-grained recognition performance on the WebiNat-5089 dataset, please follow subsequent steps

      • Download one of the following trained models into model/ using
        wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/Models/plm_web-inat_resnet50_best-epoch_54.56.pth
        
      • Activate virtual environment (e.g. conda)
      • In Web5089_demo.sh
        • Modify CUDA_VISIBLE_DEVICES to proper cuda device id.
        • Modify the model name according to the model downloaded.
      • Run demo using bash Web5089_demo.sh

Results

  1. The comparison of classification accuracy (%) for benchmark methods and webly supervised baselines (Decoupling, Co-teaching, and our Peer-learning) on the WebFG-496 dataset.

network

  1. The comparison of classification accuracy (%) of benchmarks and our proposed webly supervised baseline Peer-learning on the WebiNat-5089 dataset.

network

  1. The comparisons among our Peer-learning model (PLM), VGG-19, B-CNN, Decoupling (DP), and Co-teaching (CT) on sub-datasets Web-aircraft, Web-bird, and Web-car in WebFG-496 dataset. The value on each sub-dataset is plotted in the dotted line and the average value is plotted in solid line. It should be noted that the classification accuracy is the result of the second stage in the two-step training strategy. Since we have trained 60 epochs in the second stage on the basic network VGG-19, we only compare the first 60 epochs in the second stage of our approach with VGG-19

network


Citation

If you find this useful in your research, please consider citing:

@inproceedings{
title={Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach},
author={Zeren Sun, Yazhou Yao, Xiu-Shen Wei, Yongshun Zhang, Fumin Shen, Jianxin Wu, Jian Zhang, Heng Tao Shen},
booktitle={IEEE International Conference on Computer Vision (ICCV)},
year={2021}
}
DABO: Data Augmentation with Bilevel Optimization

DABO: Data Augmentation with Bilevel Optimization [Paper] The goal is to automatically learn an efficient data augmentation regime for image classific

ElementAI 24 Aug 12, 2022
Pytorch implementation of the paper "Class-Balanced Loss Based on Effective Number of Samples"

Class-balanced-loss-pytorch Pytorch implementation of the paper Class-Balanced Loss Based on Effective Number of Samples presented at CVPR'19. Yin Cui

Vandit Jain 697 Dec 29, 2022
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales

Intro This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales Vehicle Sam

39 Jul 21, 2022
Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
This project implements "virtual speed" from heart rate monito

ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple

2 May 20, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
PyTorch implementation of "Learn to Dance with AIST++: Music Conditioned 3D Dance Generation."

Learn to Dance with AIST++: Music Conditioned 3D Dance Generation. Installation pip install -r requirements.txt Prepare Dataset bash data/scripts/pre

Zj Li 8 Sep 07, 2021
Repo 4 basic seminar §How to make human machine readable"

WORK IN PROGRESS... Notebooks from the Seminar: Human Machine Readable WS21/22 Introduction into programming Georg Trogemann, Christian Heck, Mattis

experimental-informatics 3 May 29, 2022
Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

meshtalk This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite @inproceedings{richard2021mesht

Meta Research 221 Jan 06, 2023
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

yun_yang 192 Dec 12, 2022
Safe Policy Optimization with Local Features

Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi

Akifumi Wachi 6 Jun 05, 2022
PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021. IBRN

Google Interns 371 Jan 03, 2023