MTCNN face detection implementation for TensorFlow, as a PIP package.

Overview

MTCNN

https://travis-ci.org/ipazc/mtcnn.svg?branch=master

Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN from David Sandberg (FaceNet's MTCNN) in Facenet. It is based on the paper Zhang, K et al. (2016) [ZHANG2016].

https://github.com/ipazc/mtcnn/raw/master/result.jpg

INSTALLATION

Currently it is only supported Python3.4 onwards. It can be installed through pip:

$ pip install mtcnn

This implementation requires OpenCV>=4.1 and Keras>=2.0.0 (any Tensorflow supported by Keras will be supported by this MTCNN package). If this is the first time you use tensorflow, you will probably need to install it in your system:

$ pip install tensorflow

or with conda

$ conda install tensorflow

Note that tensorflow-gpu version can be used instead if a GPU device is available on the system, which will speedup the results.

USAGE

The following example illustrates the ease of use of this package:

>>> from mtcnn import MTCNN
>>> import cv2
>>>
>>> img = cv2.cvtColor(cv2.imread("ivan.jpg"), cv2.COLOR_BGR2RGB)
>>> detector = MTCNN()
>>> detector.detect_faces(img)
[
    {
        'box': [277, 90, 48, 63],
        'keypoints':
        {
            'nose': (303, 131),
            'mouth_right': (313, 141),
            'right_eye': (314, 114),
            'left_eye': (291, 117),
            'mouth_left': (296, 143)
        },
        'confidence': 0.99851983785629272
    }
]

The detector returns a list of JSON objects. Each JSON object contains three main keys: 'box', 'confidence' and 'keypoints':

  • The bounding box is formatted as [x, y, width, height] under the key 'box'.
  • The confidence is the probability for a bounding box to be matching a face.
  • The keypoints are formatted into a JSON object with the keys 'left_eye', 'right_eye', 'nose', 'mouth_left', 'mouth_right'. Each keypoint is identified by a pixel position (x, y).

Another good example of usage can be found in the file "example.py." located in the root of this repository. Also, you can run the Jupyter Notebook "example.ipynb" for another example of usage.

BENCHMARK

The following tables shows the benchmark of this mtcnn implementation running on an Intel i7-3612QM CPU @ 2.10GHz, with a CPU-based Tensorflow 1.4.1.

  • Pictures containing a single frontal face:
Image size Total pixels Process time FPS
460x259 119,140 0.118 seconds 8.5
561x561 314,721 0.227 seconds 4.5
667x1000 667,000 0.456 seconds 2.2
1920x1200 2,304,000 1.093 seconds 0.9
4799x3599 17,271,601 8.798 seconds 0.1
  • Pictures containing 10 frontal faces:
Image size Total pixels Process time FPS
474x224 106,176 0.185 seconds 5.4
736x348 256,128 0.290 seconds 3.4
2100x994 2,087,400 1.286 seconds 0.7

MODEL

By default the MTCNN bundles a face detection weights model.

The model is adapted from the Facenet's MTCNN implementation, merged in a single file located inside the folder 'data' relative to the module's path. It can be overriden by injecting it into the MTCNN() constructor during instantiation.

The model must be numpy-based containing the 3 main keys "pnet", "rnet" and "onet", having each of them the weights of each of the layers of the network.

For more reference about the network definition, take a close look at the paper from Zhang et al. (2016) [ZHANG2016].

LICENSE

MIT License.

REFERENCE

[ZHANG2016] (1, 2) Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10):1499–1503.
Owner
Iván de Paz Centeno
Lead Data Scientist, R&D Engineer at Smarkia.
Iván de Paz Centeno
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Habitat-Matterport 3D Dataset (HM3D) The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000

Meta Research 62 Dec 27, 2022
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023
Final report with code for KAIST Course KSE 801.

Orthogonal collocation is a method for the numerical solution of partial differential equations

Chuanbo HUA 4 Apr 06, 2022
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Hila Chefer 489 Jan 07, 2023
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 07, 2022
RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting

RATCHET: RAdiological Text Captioning for Human Examined Thoraxes RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting. Based on t

26 Nov 14, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) -- xmodel(xilinx

JiaKui Hu 10 Oct 28, 2022
Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Ceph.

Project Aquarium Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Cep

Aquarist Labs 73 Jul 21, 2022
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)

Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation [Project website] [Paper] This project is a PyTorch i

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 6 Feb 28, 2022
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

NAS-HPO-Bench-II API Overview NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs. It helps a fair and low-

yoichi hirose 8 Nov 21, 2022
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch = 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022
Code repo for realtime multi-person pose estimation in CVPR'17 (Oral)

Realtime Multi-Person Pose Estimation By Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh. Introduction Code repo for winning 2016 MSCOCO Keypoints Cha

Zhe Cao 4.9k Dec 31, 2022
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022