Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

Overview

GSL - Zero-shot Synthesis with Group-Supervised Learning

image Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD, and Fonts). Bottom: training images (attributes are known). Top: Test image (attributes are a query).

Zero-shot Synthesis with Group-Supervised Learning
Yunhao Ge, Sami Abu-El-Haija, Gan Xin, Laurent Itti
International Conference on Learning Representations (ICLR), 2021

[Paper] [Project Page] [Fonts dataset]

To aid neural networks to envision objects with different attributes, we propose a family of objective functions, expressed on groups of examples, as a novel learning framework that we term Group-Supervised Learning (GSL). GSL allows us to decompose inputs into a disentangled representation with swappable components, that can be recombined to synthesize new samples. (i.e., images of red boats & blue cars can be decomposed and recombined to synthesize novel images of red cars.

[We are actively updating the code]

Getting Started

Installation

  • Dependencies
python 3.6.4
pytorch 0.3.1.post2
visdom
tqdm

  • Clone this repo:
git clone https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
cd pytorch-CycleGAN-and-pix2pix

Datasets

  • iLab-20M, is an attributed dataset containing images of toy vehicles placed on a turntable using 11 cameras at different viewing points. There are 3 attribute classes: vehicle identity: 15 categories, each having 25-160 instances; pose; and backgrounds: over 14 for each identity: projecting vehicles in relevant contexts. You can download a subset of iLab-20M that we used in our paper here: iLab-6pose [http://ilab.usc.edu/datasets/iLab_6pose.zip]

  • Fonts, is a computer-generated RGB image datasets. Each image, with 128 * 128 pixels, contains an alphabet letter rendered using 5 independent generating attributes: letter identity, size, font color, background color and font. you can download the fonts dataset at here: Fonts [http://ilab.usc.edu/datasets/fonts].

  • RaFD contains pictures of 67 models displaying 8 emotional expressions taken by 5 different camera angles simultaneously. There are 3 attributes: identity, camera position (pose), and expression. To download the RaFD dataset, you must request access to the dataset from the Radboud Faces Database website.

  • dSprites, is a dataset of 2D shapes procedurally generated from 6 ground truth independent latent factors. These factors are color, shape, scale, rotation, x and y positions of a sprite. you can download the dSprites dataset here dSprites

Datasets Preprocess

To efficiently access the dataset in a manner of Group-Supervised Learning, some dataset need preprocess.

  • For iLab-20M dataset, after downloading iLab-6pose subset, please run python3 ./utils/ilab_data_preprocess.py
  • For RaFD dataset, after downloading, please run python3 ./utils/rafd_data_preprocess.py
  • For desprites dataset, after downloading, please run python3 ./utils/desprites_data_preprocess.py
  • For Fonts dataset, no preprocess needed.

After preprocess, please update the dataset path in '--dataset_path' parameter

Synthesis with pretrained model

You can download the pretrained models of ilab-20M, Fonts, RaFD and dsprites here pretrained models (http://ilab.usc.edu/datasets/GSL_pretrained_models.zip) and put them to ./checkpoints/pretrained_models The sample test images are in the ./checkpoints/test_imgs You can use the following sample commands to synthesize zero-shot images with our pretrained models:

  • For Fonts
python3 main.py --train False --dataset Fonts --pretrain_model_path YOUR_LOCAL_PATH_OF_PRETRAINED_MODEL --test_img_path './checkpoints/test_imgs/fonts' --viz_name fonts
  • For iLab-20M
python3 main.py --train False --dataset ilab-20M --pretrain_model_path YOUR_LOCAL_PATH_OF_PRETRAINED_MODEL --test_img_path './checkpoints/test_imgs/ilab_20M' --viz_name ilab-20m
  • For RaFD
python3 main.py --train False --dataset RaFD --pretrain_model_path YOUR_LOCAL_PATH_OF_PRETRAINED_MODEL --test_img_path './checkpoints/test_imgs/rafd' --viz_name rafd
  • For dsprites
python3 main.py --train False --dataset dsprites--pretrain_model_path YOUR_LOCAL_PATH_OF_PRETRAINED_MODEL --test_img_path './checkpoints/test_imgs/dsprites' --viz_name dsprites

Train GZS-Net on datasets used in paper

Group-Supervised Zero-shot Synthesis Network (GZS-Net) is an implemetation of Group-Supervised Learning with only reconstruction loss. If you want to train GZS-Net with the 4 datasets used in paper (Fonts, iLab-20M, RaFD, dSprites), please use 'train.py' with the dataset name, dataset path and visualize pannel name in Visdom. Note: you can also set the hyperparameter of lr, batchsize, backbone structure in train.py Here are some examples:

  • For Fonts
python3 main.py --train True --dataset Fonts --dataset_path YOUR_LOCAL_PATH_OF_FONTS --viz_name fonts
  • For iLab-20M
python3 main.py --train True --dataset ilab-20M --dataset_path YOUR_LOCAL_PATH_OF_ILAB --viz_name ilab-20m
  • For RaFD
python3 main.py --train True --dataset RaFD --dataset_path YOUR_LOCAL_PATH_OF_RaFD --viz_name rafd
  • For dsprites
python3 main.py --train True --dataset dsprites--dataset_path YOUR_LOCAL_PATH_OF_DSPRITES --viz_name dsprites

Train GZS-Net on your own dataset

To use our GZS-Net on you own dataset, before training, please refer the admissible dataset description in our paper. Note: The high level training strategy of the 4 dataset that paper used (Fonts, iLab-20M, RaFD, dSprites) is shown in Figure.3 in our paper. However, to make our method more general and compatale with more dataset, we propose a easier way to train our GZS-Net, we called 'sample edge strategy' to achieve 'One-Overlap Attribute Swap': In each training step, we sample n different edges (each edge corresponding to a specific attribute), and we release the two requirement of edge sample: (1) the two samples connected by an edge with attribute A should have same attribute A value but do not need to have different attribute values of other attributes (e.g. attribute B and C value can be the same). (2) we do not need center image x to keep showing in all edges, which means the connected images between edges can be totally different.

We train ilab-20M with the new training strategy and you can cgange our example code of ilab_20M_custom to your custom dataset.

  • Take ilab_20M_custom dataset as an example
python3 train.py  --dataset ilab_20M_custom --dataset_path YOUR_LOCAL_PATH_OF_CUSTOM_DATASET --viz_name ilab_20M_custom

Citation

If you use this code for your research, please cite our papers.

@inproceedings{ge2021zeroshot,
  title={Zero-shot Synthesis with Group-Supervised Learning},
  author={Yunhao Ge and Sami Abu-El-Haija and Gan Xin and Laurent Itti},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=8wqCDnBmnrT}
}

Acknowledgments

Our code is inspired by Beta-VAE.

Owner
Andy_Ge
Ph.D. Student in Computer Vision, Machine Learning, and Baby Learning
Andy_Ge
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing Figure: Joint multi-attribute edits using DyStyle model. Great diversity

74 Dec 03, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
This is the official implementation for the paper "Heterogeneous Multi-player Multi-armed Bandits: Closing the Gap and Generalization" in NeurIPS 2021.

MPMAB_BEACON This is code used for the paper "Decentralized Multi-player Multi-armed Bandits: Beyond Linear Reward Functions", Neurips 2021. Requireme

Cong Shen Research Group 0 Oct 26, 2021
Grow Function: Generate 3D Stacked Bifurcating Double Deep Cellular Automata based organisms which differentiate using a Genetic Algorithm...

Grow Function: A 3D Stacked Bifurcating Double Deep Cellular Automata which differentiates using a Genetic Algorithm... TLDR;High Def Trees that you can mint as NFTs on Solana

Nathaniel Gibson 4 Oct 08, 2022
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021
Contrastive Feature Loss for Image Prediction

Contrastive Feature Loss for Image Prediction We provide a PyTorch implementation of our contrastive feature loss presented in: Contrastive Feature Lo

Alex Andonian 44 Oct 05, 2022
This repository contains the code for the paper Neural RGB-D Surface Reconstruction

Neural RGB-D Surface Reconstruction Paper | Project Page | Video Neural RGB-D Surface Reconstruction Dejan Azinović, Ricardo Martin-Brualla, Dan B Gol

Dejan 406 Jan 04, 2023
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

944 Jan 07, 2023
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023
Mixup for Supervision, Semi- and Self-Supervision Learning Toolbox and Benchmark

OpenSelfSup News Downstream tasks now support more methods(Mask RCNN-FPN, RetinaNet, Keypoints RCNN) and more datasets(Cityscapes). 'GaussianBlur' is

AI Lab, Westlake University 332 Jan 03, 2023
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer 494 Jan 06, 2023
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
Space Time Recurrent Memory Network - Pytorch

Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio

Phil Wang 50 Nov 07, 2021
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
Learning and Building Convolutional Neural Networks using PyTorch

Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci

Mayur 126 Dec 22, 2022