Simple Baselines for Human Pose Estimation and Tracking

Overview

Simple Baselines for Human Pose Estimation and Tracking

News

Introduction

This is an official pytorch implementation of Simple Baselines for Human Pose Estimation and Tracking. This work provides baseline methods that are surprisingly simple and effective, thus helpful for inspiring and evaluating new ideas for the field. State-of-the-art results are achieved on challenging benchmarks. On COCO keypoints valid dataset, our best single model achieves 74.3 of mAP. You can reproduce our results using this repo. All models are provided for research purpose.

Main Results

Results on MPII val

Arch Head Shoulder Elbow Wrist Hip Knee Ankle Mean [email protected]
256x256_pose_resnet_50_d256d256d256 96.351 95.329 88.989 83.176 88.420 83.960 79.594 88.532 33.911
384x384_pose_resnet_50_d256d256d256 96.658 95.754 89.790 84.614 88.523 84.666 79.287 89.066 38.046
256x256_pose_resnet_101_d256d256d256 96.862 95.873 89.518 84.376 88.437 84.486 80.703 89.131 34.020
384x384_pose_resnet_101_d256d256d256 96.965 95.907 90.268 85.780 89.597 85.935 82.098 90.003 38.860
256x256_pose_resnet_152_d256d256d256 97.033 95.941 90.046 84.976 89.164 85.311 81.271 89.620 35.025
384x384_pose_resnet_152_d256d256d256 96.794 95.618 90.080 86.225 89.700 86.862 82.853 90.200 39.433

Note:

  • Flip test is used.

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Arch AP Ap .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
256x192_pose_resnet_50_d256d256d256 0.704 0.886 0.783 0.671 0.772 0.763 0.929 0.834 0.721 0.824
384x288_pose_resnet_50_d256d256d256 0.722 0.893 0.789 0.681 0.797 0.776 0.932 0.838 0.728 0.846
256x192_pose_resnet_101_d256d256d256 0.714 0.893 0.793 0.681 0.781 0.771 0.934 0.840 0.730 0.832
384x288_pose_resnet_101_d256d256d256 0.736 0.896 0.803 0.699 0.811 0.791 0.936 0.851 0.745 0.858
256x192_pose_resnet_152_d256d256d256 0.720 0.893 0.798 0.687 0.789 0.778 0.934 0.846 0.736 0.839
384x288_pose_resnet_152_d256d256d256 0.743 0.896 0.811 0.705 0.816 0.797 0.937 0.858 0.751 0.863

Results on Caffe-style ResNet

Arch AP Ap .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
256x192_pose_resnet_50_caffe_d256d256d256 0.704 0.914 0.782 0.677 0.744 0.735 0.921 0.805 0.704 0.783
256x192_pose_resnet_101_caffe_d256d256d256 0.720 0.915 0.803 0.693 0.764 0.753 0.928 0.821 0.720 0.802
256x192_pose_resnet_152_caffe_d256d256d256 0.728 0.925 0.804 0.702 0.766 0.760 0.931 0.828 0.729 0.806

Note:

  • Flip test is used.
  • Person detector has person AP of 56.4 on COCO val2017 dataset.
  • Difference between PyTorch-style and Caffe-style ResNet is the position of stride=2 convolution

Environment

The code is developed using python 3.6 on Ubuntu 16.04. NVIDIA GPUs are needed. The code is developed and tested using 4 NVIDIA P100 GPU cards. Other platforms or GPU cards are not fully tested.

Quick start

Installation

  1. Install pytorch >= v0.4.0 following official instruction.

  2. Disable cudnn for batch_norm:

    # PYTORCH=/path/to/pytorch
    # for pytorch v0.4.0
    sed -i "1194s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py
    # for pytorch v0.4.1
    sed -i "1254s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py
    

    Note that instructions like # PYTORCH=/path/to/pytorch indicate that you should pick a path where you'd like to have pytorch installed and then set an environment variable (PYTORCH in this case) accordingly.

  3. Clone this repo, and we'll call the directory that you cloned as ${POSE_ROOT}.

  4. Install dependencies:

    pip install -r requirements.txt
    
  5. Make libs:

    cd ${POSE_ROOT}/lib
    make
    
  6. Install COCOAPI:

    # COCOAPI=/path/to/clone/cocoapi
    git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
    cd $COCOAPI/PythonAPI
    # Install into global site-packages
    make install
    # Alternatively, if you do not have permissions or prefer
    # not to install the COCO API into global site-packages
    python3 setup.py install --user
    

    Note that instructions like # COCOAPI=/path/to/install/cocoapi indicate that you should pick a path where you'd like to have the software cloned and then set an environment variable (COCOAPI in this case) accordingly.

  7. Download pytorch imagenet pretrained models from pytorch model zoo and caffe-style pretrained models from GoogleDrive.

  8. Download mpii and coco pretrained models from OneDrive or GoogleDrive. Please download them under ${POSE_ROOT}/models/pytorch, and make them look like this:

    ${POSE_ROOT}
     `-- models
         `-- pytorch
             |-- imagenet
             |   |-- resnet50-19c8e357.pth
             |   |-- resnet50-caffe.pth.tar
             |   |-- resnet101-5d3b4d8f.pth
             |   |-- resnet101-caffe.pth.tar
             |   |-- resnet152-b121ed2d.pth
             |   `-- resnet152-caffe.pth.tar
             |-- pose_coco
             |   |-- pose_resnet_101_256x192.pth.tar
             |   |-- pose_resnet_101_384x288.pth.tar
             |   |-- pose_resnet_152_256x192.pth.tar
             |   |-- pose_resnet_152_384x288.pth.tar
             |   |-- pose_resnet_50_256x192.pth.tar
             |   `-- pose_resnet_50_384x288.pth.tar
             `-- pose_mpii
                 |-- pose_resnet_101_256x256.pth.tar
                 |-- pose_resnet_101_384x384.pth.tar
                 |-- pose_resnet_152_256x256.pth.tar
                 |-- pose_resnet_152_384x384.pth.tar
                 |-- pose_resnet_50_256x256.pth.tar
                 `-- pose_resnet_50_384x384.pth.tar
    
    
  9. Init output(training model output directory) and log(tensorboard log directory) directory:

    mkdir output 
    mkdir log
    

    Your directory tree should look like this:

    ${POSE_ROOT}
    ├── data
    ├── experiments
    ├── lib
    ├── log
    ├── models
    ├── output
    ├── pose_estimation
    ├── README.md
    └── requirements.txt
    

Data preparation

For MPII data, please download from MPII Human Pose Dataset. The original annotation files are in matlab format. We have converted them into json format, you also need to download them from OneDrive or GoogleDrive. Extract them under {POSE_ROOT}/data, and make them look like this:

${POSE_ROOT}
|-- data
`-- |-- mpii
    `-- |-- annot
        |   |-- gt_valid.mat
        |   |-- test.json
        |   |-- train.json
        |   |-- trainval.json
        |   `-- valid.json
        `-- images
            |-- 000001163.jpg
            |-- 000003072.jpg

For COCO data, please download from COCO download, 2017 Train/Val is needed for COCO keypoints training and validation. We also provide person detection result of COCO val2017 to reproduce our multi-person pose estimation results. Please download from OneDrive or GoogleDrive. Download and extract them under {POSE_ROOT}/data, and make them look like this:

${POSE_ROOT}
|-- data
`-- |-- coco
    `-- |-- annotations
        |   |-- person_keypoints_train2017.json
        |   `-- person_keypoints_val2017.json
        |-- person_detection_results
        |   |-- COCO_val2017_detections_AP_H_56_person.json
        `-- images
            |-- train2017
            |   |-- 000000000009.jpg
            |   |-- 000000000025.jpg
            |   |-- 000000000030.jpg
            |   |-- ... 
            `-- val2017
                |-- 000000000139.jpg
                |-- 000000000285.jpg
                |-- 000000000632.jpg
                |-- ... 

Valid on MPII using pretrained models

python pose_estimation/valid.py \
    --cfg experiments/mpii/resnet50/256x256_d256x3_adam_lr1e-3.yaml \
    --flip-test \
    --model-file models/pytorch/pose_mpii/pose_resnet_50_256x256.pth.tar

Training on MPII

python pose_estimation/train.py \
    --cfg experiments/mpii/resnet50/256x256_d256x3_adam_lr1e-3.yaml

Valid on COCO val2017 using pretrained models

python pose_estimation/valid.py \
    --cfg experiments/coco/resnet50/256x192_d256x3_adam_lr1e-3.yaml \
    --flip-test \
    --model-file models/pytorch/pose_coco/pose_resnet_50_256x192.pth.tar

Training on COCO train2017

python pose_estimation/train.py \
    --cfg experiments/coco/resnet50/256x192_d256x3_adam_lr1e-3.yaml

Other Implementations

Citation

If you use our code or models in your research, please cite with:

@inproceedings{xiao2018simple,
    author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
    title={Simple Baselines for Human Pose Estimation and Tracking},
    booktitle = {European Conference on Computer Vision (ECCV)},
    year = {2018}
}
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.

ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit

Jake Tae 4 Jul 27, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Pytorch implementation of OCNet series and SegFix.

openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen

openseg-group 1.1k Dec 23, 2022
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

👐 OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
Testbed of AI Systems Quality Management

qunomon Description A testbed for testing and managing AI system qualities. Demo Sorry. Not deployment public server at alpha version. Requirement Ins

AIST AIRC 15 Nov 27, 2021
Source code for the Paper: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints}

CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints Installation Run pipenv install (at your own risk with --skip-lo

Autonomous Learning Group 65 Dec 27, 2022
TensorFlow for Raspberry Pi

TensorFlow on Raspberry Pi It's officially supported! As of TensorFlow 1.9, Python wheels for TensorFlow are being officially supported. As such, this

Sam Abrahams 2.2k Dec 16, 2022
DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo.

dm_control: DeepMind Infrastructure for Physics-Based Simulation. DeepMind's software stack for physics-based simulation and Reinforcement Learning en

DeepMind 3k Dec 31, 2022
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

顾宇超 77 Dec 02, 2022
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se

International Business Machines 27 Jan 05, 2023
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Geotrend 79 Dec 28, 2022
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
🛠️ Tools for Transformers compression using Lightning ⚡

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

Jules Belveze 66 Dec 11, 2022
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022