Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Overview

StyleGAN 2 in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (https://arxiv.org/abs/1912.04958) in PyTorch

Notice

I have tried to match official implementation as close as possible, but maybe there are some details I missed. So please use this implementation with care.

Requirements

I have tested on:

  • PyTorch 1.3.1
  • CUDA 10.1/10.2

Usage

First create lmdb datasets:

python prepare_data.py --out LMDB_PATH --n_worker N_WORKER --size SIZE1,SIZE2,SIZE3,... DATASET_PATH

This will convert images to jpeg and pre-resizes it. This implementation does not use progressive growing, but you can create multiple resolution datasets using size arguments with comma separated lists, for the cases that you want to try another resolutions later.

Then you can train model in distributed settings

python -m torch.distributed.launch --nproc_per_node=N_GPU --master_port=PORT train.py --batch BATCH_SIZE LMDB_PATH

train.py supports Weights & Biases logging. If you want to use it, add --wandb arguments to the script.

SWAGAN

This implementation experimentally supports SWAGAN: A Style-based Wavelet-driven Generative Model (https://arxiv.org/abs/2102.06108). You can train SWAGAN by using

python -m torch.distributed.launch --nproc_per_node=N_GPU --master_port=PORT train.py --arch swagan --batch BATCH_SIZE LMDB_PATH

As noted in the paper, SWAGAN trains much faster. (About ~2x at 256px.)

Convert weight from official checkpoints

You need to clone official repositories, (https://github.com/NVlabs/stylegan2) as it is requires for load official checkpoints.

For example, if you cloned repositories in ~/stylegan2 and downloaded stylegan2-ffhq-config-f.pkl, You can convert it like this:

python convert_weight.py --repo ~/stylegan2 stylegan2-ffhq-config-f.pkl

This will create converted stylegan2-ffhq-config-f.pt file.

Generate samples

python generate.py --sample N_FACES --pics N_PICS --ckpt PATH_CHECKPOINT

You should change your size (--size 256 for example) if you train with another dimension.

Project images to latent spaces

python projector.py --ckpt [CHECKPOINT] --size [GENERATOR_OUTPUT_SIZE] FILE1 FILE2 ...

Closed-Form Factorization (https://arxiv.org/abs/2007.06600)

You can use closed_form_factorization.py and apply_factor.py to discover meaningful latent semantic factor or directions in unsupervised manner.

First, you need to extract eigenvectors of weight matrices using closed_form_factorization.py

python closed_form_factorization.py [CHECKPOINT]

This will create factor file that contains eigenvectors. (Default: factor.pt) And you can use apply_factor.py to test the meaning of extracted directions

python apply_factor.py -i [INDEX_OF_EIGENVECTOR] -d [DEGREE_OF_MOVE] -n [NUMBER_OF_SAMPLES] --ckpt [CHECKPOINT] [FACTOR_FILE]

For example,

python apply_factor.py -i 19 -d 5 -n 10 --ckpt [CHECKPOINT] factor.pt

Will generate 10 random samples, and samples generated from latents that moved along 19th eigenvector with size/degree +-5.

Sample of closed form factorization

Pretrained Checkpoints

Link

I have trained the 256px model on FFHQ 550k iterations. I got FID about 4.5. Maybe data preprocessing, resolution, training loop could made this difference, but currently I don't know the exact reason of FID differences.

Samples

Sample with truncation

Sample from FFHQ. At 110,000 iterations. (trained on 3.52M images)

MetFaces sample with non-leaking augmentations

Sample from MetFaces with Non-leaking augmentations. At 150,000 iterations. (trained on 4.8M images)

Samples from converted weights

Sample from FFHQ

Sample from FFHQ (1024px)

Sample from LSUN Church

Sample from LSUN Church (256px)

License

Model details and custom CUDA kernel codes are from official repostiories: https://github.com/NVlabs/stylegan2

Codes for Learned Perceptual Image Patch Similarity, LPIPS came from https://github.com/richzhang/PerceptualSimilarity

To match FID scores more closely to tensorflow official implementations, I have used FID Inception V3 implementations in https://github.com/mseitzer/pytorch-fid

Owner
Kim Seonghyeon
no side-effects
Kim Seonghyeon
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Phil Wang 62 Dec 20, 2022
Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization Note This codebase accompanies paper Learning Nearly Decomposable Va

Tonghan Wang 69 Nov 26, 2022
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans

This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision

6 Nov 07, 2022
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Simiao Zuo 111 Dec 26, 2022
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021)

EMI-FGSM This repository contains code to reproduce results from the paper: Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021) Xiaosen Wa

John Hopcroft Lab at HUST 10 Sep 26, 2022
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022
Pytorch implementation for "Adversarial Robustness under Long-Tailed Distribution" (CVPR 2021 Oral)

Adversarial Long-Tail This repository contains the PyTorch implementation of the paper: Adversarial Robustness under Long-Tailed Distribution, CVPR 20

Tong WU 89 Dec 15, 2022
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
Combining Diverse Feature Priors

Combining Diverse Feature Priors This repository contains code for reproducing the results of our paper. Paper: https://arxiv.org/abs/2110.08220 Blog

Madry Lab 5 Nov 12, 2022
Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter

ACE Please find the preliminary version published at BMVC 2020 in the folder BMVC_version, and its extended journal version in Journal_version. Datase

28 Dec 25, 2022
FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction

FaceExtraction FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction Occlusions often occur in face images in the wild, tr

16 Dec 14, 2022
dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ)

dualFace dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ) We provide python implementations for our CVM 2021 paper "dualFac

Haoran XIE 46 Nov 10, 2022
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
Interactive dimensionality reduction for large datasets

BlosSOM 🌼 BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimen

19 Dec 14, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
Python版OpenCVのTracking APIのサンプルです。DaSiamRPNアルゴリズムまで対応しています。

OpenCV-Object-Tracker-Sample Python版OpenCVのTracking APIのサンプルです。   Requirement opencv-contrib-python 4.5.3.56 or later Algorithm 2021/07/16時点でOpenCVには以

KazuhitoTakahashi 36 Jan 01, 2023