RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

Related tags

Deep LearningRuleBert
Overview

RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

(Paper) (Slides) (Video)

RuleBERT reasons over Natural Language

RuleBERT is a pre-trained language model that has been fine-tuned on soft logical results. This repo contains the required code for running the experiments of the associated paper.

Installation

0. Clone Repo

git clone https://github.com/MhmdSaiid/RuleBert
cd RuleBERT

1. Create virtual env and install reqs

(optional) virtualenv -m python RuleBERT
pip install -r requirements.txt

2. Download Data

The datasets can be found here. (DISCLAIMER: ~25 GB on disk)

You can also run:

bash download_datasets.sh

Run Experiments

When an experiemnt is complete, the model, the tokenizer, and the results are stored in models/**timestamp**.

i) Single Rules

bash experiments/single_rules/SR.sh data/single_rules 

ii) Rule Union Experiment

bash experiments/union_rules/UR.sh data/union_rules 

iii) Rule Chain Experiment

bash experiments/chain_rules/CR.sh data/chain_rules 

iv) External Datasets

Generate Your Own Data

You can generate your own data for a single rule, a union of rules sharing the same rule head, or a chain of rules.

First, make sure you are in the correct directory.

cd data_generation

1) Single Rule

There are two ways to data for a single rule:

i) Pass Data through Arguments

python DataGeneration.py 
       --rule 'spouse(A,B) :- child(A,B).' 
       --pool_list "[['Anne', 'Bob', 'Charlie'],
                    ['Frank', 'Gary', 'Paul']]" 
       --rule_support 0.67
  • --rule : The rule in string format. Consult here to see how to write a rule.
  • --pool_list : For every variable in the rule, we include a list of possible instantiations.
  • --rule_support : A float representing the rule support. If not specified, rule defaults to a hard rule.
  • --max_num_facts : Maximum number of facts in a generated theory.
  • --num : Total number of theories per generated (rule,facts).
  • --TWL : When called, we use three-way-logic instead of negation as failure. Unsatisifed predicates are no longer considered False.
  • --complementary_rules : A string of complementary rules to add.
  • --p_bar : Boolean to show a progress bar. Deafults to True.

ii) Pass a JSON file

This is more convenient for when rules are long or when there are multiple rules. The JSON file specifies the rule(s), pool list(s), and rule support(s). It is passed as an argument.

python DataGeneration.py --rule_json r1.jsonl

2) Union of Rules

For a union of rules sharing the same rule-head predicate, we pass a JSON file to the command that contaains rules with overlapping rule-head predicates.

python DataGeneration.py --rule_json Multi_rule.json 
                         --type union

--type is used to indicate which type of data generation method should be set to. For a union of rules, we use --type union. If --type single is used, we do single-rule data generation for each rule in the file.

3) Chained Rules

For a chain of rules, the json file should include rules that could be chained together.

python DataGeneration.py --rule_json chain_rules.json 
                         --type chain

The chain depth defaults to 5 --chain_depth 5.

Train your Own Model

To fine-tune the model, run:

# train
python trainer.py --data-dir data/R1/
                  --epochs 3
                  --verbose

When complete, the model and tokenizer are saved in models/**timestamp**.

To test the model, run:

# test
python tester.py --test_data_dir data/test_R1/
                 --model_dir models/**timestamp**
                 --verbose

A JSON file will be saved in model_dir containing the results.

Contact Us

For any inquiries, feel free to contact us, or raise an issue on Github.

Reference

You can cite our work:

@inproceedings{saeed-etal-2021-rulebert,
    title = "{R}ule{BERT}: Teaching Soft Rules to Pre-Trained Language Models",
    author = "Saeed, Mohammed  and
      Ahmadi, Naser  and
      Nakov, Preslav  and
      Papotti, Paolo",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.110",
    pages = "1460--1476",
    abstract = "While pre-trained language models (PLMs) are the go-to solution to tackle many natural language processing problems, they are still very limited in their ability to capture and to use common-sense knowledge. In fact, even if information is available in the form of approximate (soft) logical rules, it is not clear how to transfer it to a PLM in order to improve its performance for deductive reasoning tasks. Here, we aim to bridge this gap by teaching PLMs how to reason with soft Horn rules. We introduce a classification task where, given facts and soft rules, the PLM should return a prediction with a probability for a given hypothesis. We release the first dataset for this task, and we propose a revised loss function that enables the PLM to learn how to predict precise probabilities for the task. Our evaluation results show that the resulting fine-tuned models achieve very high performance, even on logical rules that were unseen at training. Moreover, we demonstrate that logical notions expressed by the rules are transferred to the fine-tuned model, yielding state-of-the-art results on external datasets.",
}

License

MIT

Owner
“If a machine is expected to be infallible, it cannot also be intelligent.” ― Alan Turing
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

Yunxia Zhao 3 Dec 29, 2022
i-RevNet Pytorch Code

i-RevNet: Deep Invertible Networks Pytorch implementation of i-RevNets. i-RevNets define a family of fully invertible deep networks, built from a succ

Jörn Jacobsen 378 Dec 06, 2022
JAX-based neural network library

Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i

DeepMind 2.3k Jan 04, 2023
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

NIRPS-ETC Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph February 2

Nolan Grieves 2 Sep 15, 2022
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
PyTorch framework for Deep Learning research and development.

Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati

Catalyst-Team 29 Jul 13, 2022
Python module providing a framework to trace individual edges in an image using Gaussian process regression.

Edge Tracing using Gaussian Process Regression Repository storing python module which implements a framework to trace individual edges in an image usi

Jamie Burke 7 Dec 27, 2022
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Beom 74 Dec 27, 2022
MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

172 Dec 18, 2022
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
[ICML 2021] Towards Understanding and Mitigating Social Biases in Language Models

Towards Understanding and Mitigating Social Biases in Language Models This repo contains code and data for evaluating and mitigating bias from generat

Paul Liang 42 Jan 03, 2023